Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 8/2017

26.06.2017

Fatigue Crack Growth Behavior of a New Type of 10% Cr Martensitic Steel Welded Joints with Ni-Based Weld Metal

verfasst von: Qunbing Zhang, Jianxun Zhang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 8/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present work, the fatigue crack growth (FCG) behavior of a new type of 10% Cr martensitic steel welded joints with Ni-based weld metal was comparatively studied for different regions including base metal (BM), heat-affected zone (HAZ) and weld metal (WM). FCG results indicated that the tempered lath martensite BM has a higher fatigue crack growth resistance than the tempered granular martensite HAZ that without a typical lath structure. In comparison, the austenitic WM has the highest fatigue crack growth threshold. Meanwhile, due to the microstructural and chemical compositional differences between BM and WM, a clear interface existed in the welded joints. At the region of the interface, the microstructures were physically connected and an element transition layer was formed. Although the starter notch was positioned at the region of interface, the fatigue crack gradually deviated from the interface and ultimately propagated along the inter-critically heat-affected zone. The difference in microstructure is considered as the primary factor that resulted in the different fatigue crack growth behaviors of the welded joints. In addition, the continuous microstructure connection and composition transition at the interface contributed to the good fatigue resistance at this region.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Prasad, V.B. Rajkumar, and K.C. Hari Kumar, Numerical Simulation of Precipitate Evolution in Ferritic Martensitic Power Plant Steels, Calphad, 2012, 36, p 1–7CrossRef S. Prasad, V.B. Rajkumar, and K.C. Hari Kumar, Numerical Simulation of Precipitate Evolution in Ferritic Martensitic Power Plant Steels, Calphad, 2012, 36, p 1–7CrossRef
2.
Zurück zum Zitat J.A. Francis, W. Mazur, and H.K.D.H. Bhadeshia, Review Type IV Cracking in Ferritic Power Plant Steels, Mater. Sci. Technol., 2006, 22, p 1387–1395CrossRef J.A. Francis, W. Mazur, and H.K.D.H. Bhadeshia, Review Type IV Cracking in Ferritic Power Plant Steels, Mater. Sci. Technol., 2006, 22, p 1387–1395CrossRef
3.
Zurück zum Zitat R. Agamennone, W. Blum, C. Gupta, and J.K. Chakravartty, Evolution of Microstructure and Deformation Resistance in Creep of Tempered Martensitic 9–12%Cr–2%W–5%Co Steels, Acta Mater., 2006, 54, p 3003–3014CrossRef R. Agamennone, W. Blum, C. Gupta, and J.K. Chakravartty, Evolution of Microstructure and Deformation Resistance in Creep of Tempered Martensitic 9–12%Cr–2%W–5%Co Steels, Acta Mater., 2006, 54, p 3003–3014CrossRef
4.
Zurück zum Zitat N. Dudova, A. Plotnikova, D. Molodov, A. Belyakov, and R. Kaibyshev, Structural Changes of Tempered Martensitic 9%Cr–2%W–3%Co Steel During Creep at 650 °C, Mater. Sci. Eng. A, 2012, 534, p 632–639CrossRef N. Dudova, A. Plotnikova, D. Molodov, A. Belyakov, and R. Kaibyshev, Structural Changes of Tempered Martensitic 9%Cr–2%W–3%Co Steel During Creep at 650 °C, Mater. Sci. Eng. A, 2012, 534, p 632–639CrossRef
5.
Zurück zum Zitat F. Yin, L. Tian, B. Xue, X. Jiang, and L. Zhou, Effect of Titanium on Second Phase Precipitation Behavior in 9–12Cr Ferritic/Martensitic Heat Resistant Steels, Rare Met., 2011, 30, p 497–500CrossRef F. Yin, L. Tian, B. Xue, X. Jiang, and L. Zhou, Effect of Titanium on Second Phase Precipitation Behavior in 9–12Cr Ferritic/Martensitic Heat Resistant Steels, Rare Met., 2011, 30, p 497–500CrossRef
6.
Zurück zum Zitat M.C. Brandes, L. Kovarik, M.K. Miller, G.S. Daehn, and M.J. Mills, Creep Behavior and Deformation Mechanisms in a Nanocluster Strengthened Ferritic Steel, Acta Mater., 2012, 60, p 1827–1839CrossRef M.C. Brandes, L. Kovarik, M.K. Miller, G.S. Daehn, and M.J. Mills, Creep Behavior and Deformation Mechanisms in a Nanocluster Strengthened Ferritic Steel, Acta Mater., 2012, 60, p 1827–1839CrossRef
7.
Zurück zum Zitat L. Helis, Y. Toda, T. Hara, H. Miyazaki, and F. Abe, Effect of Cobalt on the Microstructure of Tempered Martensitic 9Cr Steel for Ultra-Supercritical Power Plants, Mater. Sci. Eng. A, 2009, 510–511, p 88–94CrossRef L. Helis, Y. Toda, T. Hara, H. Miyazaki, and F. Abe, Effect of Cobalt on the Microstructure of Tempered Martensitic 9Cr Steel for Ultra-Supercritical Power Plants, Mater. Sci. Eng. A, 2009, 510–511, p 88–94CrossRef
8.
Zurück zum Zitat Q. Zhang, J. Zhang, P. Zhao, Y. Huang, Y. Yang, and Y. Zhao, Microstructure of 10% Cr Martensitic Heat-Resistant Steel Welded Joints and Type IV Cracking Behavior During Creep Rupture at 650 °C, Mater. Sci. Eng. A, 2015, 638, p 30–37CrossRef Q. Zhang, J. Zhang, P. Zhao, Y. Huang, Y. Yang, and Y. Zhao, Microstructure of 10% Cr Martensitic Heat-Resistant Steel Welded Joints and Type IV Cracking Behavior During Creep Rupture at 650 °C, Mater. Sci. Eng. A, 2015, 638, p 30–37CrossRef
9.
Zurück zum Zitat D.W. Rathod, S. Pandey, P.K. Singh, and R. Prasad, Experimental Analysis of Dissimilar Metal Weld Joint: Ferritic to Austenitic Stainless Steel, Mater. Sci. Eng. A, 2015, 639, p 259–268CrossRef D.W. Rathod, S. Pandey, P.K. Singh, and R. Prasad, Experimental Analysis of Dissimilar Metal Weld Joint: Ferritic to Austenitic Stainless Steel, Mater. Sci. Eng. A, 2015, 639, p 259–268CrossRef
10.
Zurück zum Zitat F. Khodabakhshi, M. Kazeminezhad, and A.H. Kokabi, Metallurgical Characteristics and Failure Mode Transition for Dissimilar Resistance Spot Welds Between Ultra-Fine Grained and Coarse-Grained Low Carbon Steel Sheets, Mater. Sci. Eng. A, 2015, 637, p 12–22CrossRef F. Khodabakhshi, M. Kazeminezhad, and A.H. Kokabi, Metallurgical Characteristics and Failure Mode Transition for Dissimilar Resistance Spot Welds Between Ultra-Fine Grained and Coarse-Grained Low Carbon Steel Sheets, Mater. Sci. Eng. A, 2015, 637, p 12–22CrossRef
11.
Zurück zum Zitat M. Sarkari Khorrami, M.A. Mostafaei, H. Pouraliakbar, and A.H. Kokabi, Study on Microstructure and Mechanical Characteristics of Low-Carbon Steel and Ferritic Stainless Steel Joints, Mater. Sci. Eng. A, 2014, 608, p 35–45CrossRef M. Sarkari Khorrami, M.A. Mostafaei, H. Pouraliakbar, and A.H. Kokabi, Study on Microstructure and Mechanical Characteristics of Low-Carbon Steel and Ferritic Stainless Steel Joints, Mater. Sci. Eng. A, 2014, 608, p 35–45CrossRef
12.
Zurück zum Zitat J. Parker, Factors Affecting Type IV Creep Damage in Grade 91 Steel Welds, Mater. Sci. Eng. A, 2013, 578, p 430–437CrossRef J. Parker, Factors Affecting Type IV Creep Damage in Grade 91 Steel Welds, Mater. Sci. Eng. A, 2013, 578, p 430–437CrossRef
13.
Zurück zum Zitat T.C. Totemeier, J.A. Simpson, and H. Tian, Effect of Weld Intercooling Temperature on the Structure and Impact Strength Of Ferritic–Martensitic Steels, Mater. Sci. Eng. A, 2006, 426, p 323–331CrossRef T.C. Totemeier, J.A. Simpson, and H. Tian, Effect of Weld Intercooling Temperature on the Structure and Impact Strength Of Ferritic–Martensitic Steels, Mater. Sci. Eng. A, 2006, 426, p 323–331CrossRef
14.
Zurück zum Zitat T. Sakthivel, M. Vasudevan, K. Laha, P. Parameswaran, K.S. Chandravathi, S. Panneer Selvi, V. Maduraimuthu, and M.D. Mathew, Creep Rupture Behavior of 9Cr–1.8 W–0.5Mo–VNb (ASME grade 92) Ferritic Steel Weld Joint, Mater. Sci. Eng. A, 2014, 591, p 111–120CrossRef T. Sakthivel, M. Vasudevan, K. Laha, P. Parameswaran, K.S. Chandravathi, S. Panneer Selvi, V. Maduraimuthu, and M.D. Mathew, Creep Rupture Behavior of 9Cr–1.8 W–0.5Mo–VNb (ASME grade 92) Ferritic Steel Weld Joint, Mater. Sci. Eng. A, 2014, 591, p 111–120CrossRef
15.
Zurück zum Zitat L. Falat, M. Svoboda, A. Výrostková, I. Petryshynets, and M. Sopko, Microstructure and Creep Characteristics of Dissimilar T91/TP316H Martensitic/Austenitic Welded Joint with Ni-Based Weld Metal, Mater. Charact., 2012, 72, p 15–23CrossRef L. Falat, M. Svoboda, A. Výrostková, I. Petryshynets, and M. Sopko, Microstructure and Creep Characteristics of Dissimilar T91/TP316H Martensitic/Austenitic Welded Joint with Ni-Based Weld Metal, Mater. Charact., 2012, 72, p 15–23CrossRef
16.
Zurück zum Zitat M. Pouranvari, On the Weldability of Grey Cast Iron Using Nickel Based Filler Metal, Mater. Des., 2010, 31, p 3253–3258CrossRef M. Pouranvari, On the Weldability of Grey Cast Iron Using Nickel Based Filler Metal, Mater. Des., 2010, 31, p 3253–3258CrossRef
17.
Zurück zum Zitat M. Velu and S. Bhat, Experimental Investigations of Fracture and Fatigue Crack Growth of Copper–Steel Joints Arc Welded Using Nickel-Base Filler, Mater. Des., 2015, 67, p 244–260CrossRef M. Velu and S. Bhat, Experimental Investigations of Fracture and Fatigue Crack Growth of Copper–Steel Joints Arc Welded Using Nickel-Base Filler, Mater. Des., 2015, 67, p 244–260CrossRef
18.
Zurück zum Zitat H. Lee, S. Lee, J. Kim, and J. Lee, Creep–fatigue Damage for a Structure with Dissimilar Metal Welds of Modified 9Cr–1Mo Steel and 316L Stainless Steel, Int. J. Fatigue, 2007, 29, p 1868–1879CrossRef H. Lee, S. Lee, J. Kim, and J. Lee, Creep–fatigue Damage for a Structure with Dissimilar Metal Welds of Modified 9Cr–1Mo Steel and 316L Stainless Steel, Int. J. Fatigue, 2007, 29, p 1868–1879CrossRef
19.
Zurück zum Zitat S.B. Narasimhachary and A. Saxena, Crack Growth Behavior of 9Cr − 1Mo (P91) Steel Under Creep–Fatigue Conditions, Int. J. Fatigue, 2013, 56, p 106–113CrossRef S.B. Narasimhachary and A. Saxena, Crack Growth Behavior of 9Cr − 1Mo (P91) Steel Under Creep–Fatigue Conditions, Int. J. Fatigue, 2013, 56, p 106–113CrossRef
20.
Zurück zum Zitat V. Chaswal, G. Sasikala, S.K. Ray, S.L. Mannan, and B. Raj, Fatigue Crack Growth Mechanism in Aged 9Cr–1Mo Steel: Threshold And Paris Regimes, Mater. Sci. Eng. A, 2005, 395, p 251–264CrossRef V. Chaswal, G. Sasikala, S.K. Ray, S.L. Mannan, and B. Raj, Fatigue Crack Growth Mechanism in Aged 9Cr–1Mo Steel: Threshold And Paris Regimes, Mater. Sci. Eng. A, 2005, 395, p 251–264CrossRef
21.
Zurück zum Zitat B.M. Schönbauer, S.E. Stanzl-Tschegg, A. Perlega, R.N. Salzman, N.F. Rieger, S. Zhou, A. Turnbull, and D. Gandy, Fatigue Life Estimation of Pitted 12% Cr Steam Turbine Blade Steel in Different Environments and at Different Stress Ratios, Int. J. Fatigue, 2014, 65, p 33–43CrossRef B.M. Schönbauer, S.E. Stanzl-Tschegg, A. Perlega, R.N. Salzman, N.F. Rieger, S. Zhou, A. Turnbull, and D. Gandy, Fatigue Life Estimation of Pitted 12% Cr Steam Turbine Blade Steel in Different Environments and at Different Stress Ratios, Int. J. Fatigue, 2014, 65, p 33–43CrossRef
22.
Zurück zum Zitat T. Wakai, O. Inoue, M. Ando, and S. Kobayashi, Thermal Fatigue Crack Growth Tests and Analyses of Thick Wall Cylinder Made of Mod. 9Cr–1Mo Steel, Nucl. Eng. Des., 2015, 295, p 797–803CrossRef T. Wakai, O. Inoue, M. Ando, and S. Kobayashi, Thermal Fatigue Crack Growth Tests and Analyses of Thick Wall Cylinder Made of Mod. 9Cr–1Mo Steel, Nucl. Eng. Des., 2015, 295, p 797–803CrossRef
23.
Zurück zum Zitat M. Nani Babu, G. Sasikala, B. Shashank Dutt, S. Venugopal, S.K. Albert, A.K. Bhaduri, and T. Jayakumar, Investigation on Influence of Dynamic Strain Ageing on Fatigue Crack Growth Behaviour of Modified 9Cr–1Mo Steel, Int. J. Fatigue, 2012, 43, p 242–245CrossRef M. Nani Babu, G. Sasikala, B. Shashank Dutt, S. Venugopal, S.K. Albert, A.K. Bhaduri, and T. Jayakumar, Investigation on Influence of Dynamic Strain Ageing on Fatigue Crack Growth Behaviour of Modified 9Cr–1Mo Steel, Int. J. Fatigue, 2012, 43, p 242–245CrossRef
24.
Zurück zum Zitat Y. Kumar, S. Venugopal, G. Sasikala, S.K. Albert, and A.K. Bhaduri, Study of Creep Crack Growth in a Modified 9Cr–1Mo Steel Weld Metal and Heat Affected Zone, Mater. Sci. Eng. A, 2016, 655, p 300–309CrossRef Y. Kumar, S. Venugopal, G. Sasikala, S.K. Albert, and A.K. Bhaduri, Study of Creep Crack Growth in a Modified 9Cr–1Mo Steel Weld Metal and Heat Affected Zone, Mater. Sci. Eng. A, 2016, 655, p 300–309CrossRef
25.
Zurück zum Zitat X. Deng, F. Lu, H. Cui, X. Tang, and Z. Li, Microstructure Correlation and Fatigue Crack Growth Behavior in Dissimilar 9Cr/CrMoV Welded Joint, Mater. Sci. Eng. A, 2016, 651, p 1018–1030CrossRef X. Deng, F. Lu, H. Cui, X. Tang, and Z. Li, Microstructure Correlation and Fatigue Crack Growth Behavior in Dissimilar 9Cr/CrMoV Welded Joint, Mater. Sci. Eng. A, 2016, 651, p 1018–1030CrossRef
26.
Zurück zum Zitat Q. Wu, F. Lu, H. Cui, X. Liu, P. Wang, and X. Tang, Role of Butter Layer in Low-Cycle Fatigue Behavior of Modified 9Cr and CrMoV Dissimilar Rotor Welded Joint, Mater. Des., 2014, 59, p 165–175CrossRef Q. Wu, F. Lu, H. Cui, X. Liu, P. Wang, and X. Tang, Role of Butter Layer in Low-Cycle Fatigue Behavior of Modified 9Cr and CrMoV Dissimilar Rotor Welded Joint, Mater. Des., 2014, 59, p 165–175CrossRef
27.
Zurück zum Zitat M.-L. Zhu, F.-Z. Xuan, and S.-T. Tu, Interpreting Load Ratio Dependence of Near-Threshold Fatigue Crack Growth by a New Crack Closure Model, Int. J. Press. Vessels Pip., 2013, 110, p 9–13CrossRef M.-L. Zhu, F.-Z. Xuan, and S.-T. Tu, Interpreting Load Ratio Dependence of Near-Threshold Fatigue Crack Growth by a New Crack Closure Model, Int. J. Press. Vessels Pip., 2013, 110, p 9–13CrossRef
28.
Zurück zum Zitat A. Trudel, M. Sabourin, M. Lévesque, and M. Brochu, Fatigue Crack Growth in the Heat Affected Zone of a Hydraulic Turbine Runner Weld, Int. J. Fatigue, 2014, 66, p 39–46CrossRef A. Trudel, M. Sabourin, M. Lévesque, and M. Brochu, Fatigue Crack Growth in the Heat Affected Zone of a Hydraulic Turbine Runner Weld, Int. J. Fatigue, 2014, 66, p 39–46CrossRef
Metadaten
Titel
Fatigue Crack Growth Behavior of a New Type of 10% Cr Martensitic Steel Welded Joints with Ni-Based Weld Metal
verfasst von
Qunbing Zhang
Jianxun Zhang
Publikationsdatum
26.06.2017
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 8/2017
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2756-x

Weitere Artikel der Ausgabe 8/2017

Journal of Materials Engineering and Performance 8/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.