Skip to main content

2017 | OriginalPaper | Buchkapitel

Fatigue Performance Prediction of Structural Materials by Multi-scale Modeling and Machine Learning

verfasst von : Takayuki Shiraiwa, Fabien Briffod, Yuto Miyazawa, Manabu Enoki

Erschienen in: Proceedings of the 4th World Congress on Integrated Computational Materials Engineering (ICME 2017)

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Structural materials having higher performance in strength, toughness, and fatigue resistance are strongly required. In the conventional materials development, many fatigue tests need to be conducted to validate statistical behavior of fatigue failure. Accordingly the evaluation of fatigue properties with shorter time becomes quite essential. Based on such background, we are developing fatigue prediction methods for wide range of structural materials by multi-scale finite element analysis (FEA) and machine learning in the Materials Integration (MI) system. The multi-scale FEA consists of the following procedures: (i) mechanical and thermal properties are estimated by using commercially available software and database; (ii) temperature field, residual stress and distortion generated during a manufacturing process is calculated on the macroscopic model by thermo-mechanical FEA; (iii) macroscopic stress field under cyclic loading condition is calculated with a hardening constitutive model; (iv) the microscopic stress field is derived by finite element model with the polycrystalline structures and the cycles for a fatigue crack initiation is analyzed by strain energy accumulation on the slip plane; (v) the cycles for fatigue crack propagation is analyzed by extended finite element method (X-FEM) and the total number of cycles to the failure is obtained. The second approach is to use machine learning techniques to obtain empirical prediction formula. The database was prepared from published resources and experiments. Deterministic machine learning techniques such as multivariate linear regression and artificial neural network provided accurate equations to predict fatigue strength from materials and process parameters. Additionally, the concept of model-based machine learning was adopted to incorporate prior knowledge of microstructures and properties, and to account for uncertainty on fatigue life. The results showed that model-based machine learning was a promising tool for predicting fatigue performance in structural materials. The features and limitations of our prediction methods will be discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. Shiga, H. Murakawa, K. Hiraoka, N. Osawa, S. Tsutsumi, H. Yajima, T. Tanino, Fatigue Improvement of Steel Welded Joints Using Elongated-Bead Weld Method for Low Temperature Transformation Welding Materials. Jpn. Weld. Soc. (2016), F-23-27 C. Shiga, H. Murakawa, K. Hiraoka, N. Osawa, S. Tsutsumi, H. Yajima, T. Tanino, Fatigue Improvement of Steel Welded Joints Using Elongated-Bead Weld Method for Low Temperature Transformation Welding Materials. Jpn. Weld. Soc. (2016), F-23-27
2.
Zurück zum Zitat J.A. Wasynczuk, R.O. Ritchie, G. Thomas, Effects of microstructure on fatigue crack-growth in duplex ferrite martensite steels. Mater. Sci. Eng. 62, 79–92 (1984)CrossRef J.A. Wasynczuk, R.O. Ritchie, G. Thomas, Effects of microstructure on fatigue crack-growth in duplex ferrite martensite steels. Mater. Sci. Eng. 62, 79–92 (1984)CrossRef
3.
Zurück zum Zitat K. Tanaka, T. Mura, A dislocation model for fatigue crack initiation. J. Appl. Mech. 48, 97–103 (1981)CrossRef K. Tanaka, T. Mura, A dislocation model for fatigue crack initiation. J. Appl. Mech. 48, 97–103 (1981)CrossRef
4.
Zurück zum Zitat C.M. Bishop, Model-based machine learning. Trans. R. Soc. A 371, 1–17 (2013) C.M. Bishop, Model-based machine learning. Trans. R. Soc. A 371, 1–17 (2013)
5.
Zurück zum Zitat H. Xiao, J.L. Wu, J.X. Wang, R. Sun, C.J. Roy, Quantifying and reducing model-form uncertainties in reynolds averaged navier-stokes equations: an data-driven, physics-based bayesian approach. J. Comput. Phys. 115–136 (2016) H. Xiao, J.L. Wu, J.X. Wang, R. Sun, C.J. Roy, Quantifying and reducing model-form uncertainties in reynolds averaged navier-stokes equations: an data-driven, physics-based bayesian approach. J. Comput. Phys. 115–136 (2016)
7.
Zurück zum Zitat Fabien Briffod, Takayuki Shiraiwa, Manabu Enoki, Fatigue crack initiation simulation in pure iron polycrystalline aggregate. Mater. Trans. 57, 1–6 (2016)CrossRef Fabien Briffod, Takayuki Shiraiwa, Manabu Enoki, Fatigue crack initiation simulation in pure iron polycrystalline aggregate. Mater. Trans. 57, 1–6 (2016)CrossRef
8.
Zurück zum Zitat A. Agrawal, P.D. Deshpande, A. Cecen, G.P. Basavarsu, A.N. Choudhary, S.R. Kalidindi, Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters. Integrating Mater. Manuf. Innov. 3, 1–19 (2014)CrossRef A. Agrawal, P.D. Deshpande, A. Cecen, G.P. Basavarsu, A.N. Choudhary, S.R. Kalidindi, Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters. Integrating Mater. Manuf. Innov. 3, 1–19 (2014)CrossRef
Metadaten
Titel
Fatigue Performance Prediction of Structural Materials by Multi-scale Modeling and Machine Learning
verfasst von
Takayuki Shiraiwa
Fabien Briffod
Yuto Miyazawa
Manabu Enoki
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-57864-4_29

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.