Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 8/2012

01.08.2012 | Symposium: Fatigue & Corrosion Damage in Metallic Materials

Fatigue Strength and Crack Initiation Mechanism of Very-High-Cycle Fatigue for Low Alloy Steels

verfasst von: Youshi Hong, Aiguo Zhao, Guian Qian, Chengen Zhou

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 8/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The fatigue strength and crack initiation mechanisms of very-high-cycle fatigue (VHCF) for two low alloy steels were investigated. Rotary bending tests at 52.5 Hz with hour-glass type specimens were carried out to obtain the fatigue propensity of the test steels, for which the failure occurred up to the VHCF regime of 108 cycles with the S-N curves of stepwise tendency. Fractography observations show that the crack initiation of VHCF is at subsurface inclusion with “fish-eye” pattern. The fish-eye is of equiaxed shape and tends to tangent the specimen surface. The size of the fish-eye becomes large with the increasing depth of related inclusion from the surface. The fish-eye crack grows faster outward to the specimen surface than inward. The values of the stress intensity factor (K I ) at different regions of fracture surface were calculated, indicating that the K I value of fish-eye crack is close to the value of relevant fatigue threshold (ΔK th ). A new parameter was proposed to interpret the competition mechanism of fatigue crack initiation at the specimen surface or at the subsurface. The simulation results indicate that large inclusion size, small grain size, and high strength of material will promote fatigue crack initiation at the specimen subsurface, which are in agreement with experimental observations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat A. Wöhler: Engineering, 1867, vol. 2, pp. 160–61. A. Wöhler: Engineering, 1867, vol. 2, pp. 160–61.
2.
Zurück zum Zitat Annual Book of ASTM Standards, E468-90 (2004), ASTM, Philadelphia, PA, 2006, Sect. 3, vol. 03.01, pp. 556–61. Annual Book of ASTM Standards, E468-90 (2004), ASTM, Philadelphia, PA, 2006, Sect. 3, vol. 03.01, pp. 556–61.
3.
Zurück zum Zitat M. Kikukawa, K. Ohji, and K. Ogura: J. Basic Eng., Trans. ASME D, 1965, vol. 87D, pp. 857–64.CrossRef M. Kikukawa, K. Ohji, and K. Ogura: J. Basic Eng., Trans. ASME D, 1965, vol. 87D, pp. 857–64.CrossRef
4.
Zurück zum Zitat T. Naito, H. Ueda, and M. Kikuchi: J. Soc. Mater. Sci. Jpn., 1983, vol. 32, pp. 1162–66.CrossRef T. Naito, H. Ueda, and M. Kikuchi: J. Soc. Mater. Sci. Jpn., 1983, vol. 32, pp. 1162–66.CrossRef
5.
Zurück zum Zitat T. Naito, H. Ueda, and M. Kikuchi: Metall. Trans. A, 1984, vol. 15A, pp. 1431–36. T. Naito, H. Ueda, and M. Kikuchi: Metall. Trans. A, 1984, vol. 15A, pp. 1431–36.
6.
Zurück zum Zitat S.E. Stanzl, E.K. Tschegg, and H. Mayer: Int. J. Fatigue, 1986, vol. 8, pp. 195–200.CrossRef S.E. Stanzl, E.K. Tschegg, and H. Mayer: Int. J. Fatigue, 1986, vol. 8, pp. 195–200.CrossRef
7.
Zurück zum Zitat P. Lukáš and L. Kunz: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 747–53.CrossRef P. Lukáš and L. Kunz: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 747–53.CrossRef
8.
Zurück zum Zitat Y. Murakami, N.N. Yokoyama, and J. Nagata: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 735–46.CrossRef Y. Murakami, N.N. Yokoyama, and J. Nagata: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 735–46.CrossRef
9.
Zurück zum Zitat C. Bathias and P.C. Paris: Gigacycle Fatigue in Mechanical Practice, Marcel Dekker, New York, NY, 2005. C. Bathias and P.C. Paris: Gigacycle Fatigue in Mechanical Practice, Marcel Dekker, New York, NY, 2005.
10.
Zurück zum Zitat H. Emura and K. Asami: Trans. JSME, Part A, 1989, vol. 55, pp. 45–50.CrossRef H. Emura and K. Asami: Trans. JSME, Part A, 1989, vol. 55, pp. 45–50.CrossRef
11.
Zurück zum Zitat T. Sakai, Y. Sato, and N. Oguma: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 765–73.CrossRef T. Sakai, Y. Sato, and N. Oguma: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 765–73.CrossRef
12.
Zurück zum Zitat K. Shiozawa, L. Lu, and S. Ishihara: Fatigue Fract. Eng. Mater. Struct., 2001, vol. 24, pp. 781–90.CrossRef K. Shiozawa, L. Lu, and S. Ishihara: Fatigue Fract. Eng. Mater. Struct., 2001, vol. 24, pp. 781–90.CrossRef
13.
Zurück zum Zitat Y. Ochi, T. Matsumura, K. Masaki, and S. Yoshida: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 823–30.CrossRef Y. Ochi, T. Matsumura, K. Masaki, and S. Yoshida: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 823–30.CrossRef
14.
Zurück zum Zitat S. Nishijima and K. Kanazawa: Fatigue Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 601–07.CrossRef S. Nishijima and K. Kanazawa: Fatigue Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 601–07.CrossRef
15.
Zurück zum Zitat C. Bathias: Fatigue Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 559–65.CrossRef C. Bathias: Fatigue Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 559–65.CrossRef
16.
Zurück zum Zitat Q.Y. Wang, J.Y. Berard, S. Rathery, and C. Bathias: Fatigue Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 673–77. Q.Y. Wang, J.Y. Berard, S. Rathery, and C. Bathias: Fatigue Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 673–77.
17.
Zurück zum Zitat M.D. Chapetti, T. Tagawa, and T. Miyata: Mater. Sci. Eng. A, 2003, vol. 356, pp. 236–44.CrossRef M.D. Chapetti, T. Tagawa, and T. Miyata: Mater. Sci. Eng. A, 2003, vol. 356, pp. 236–44.CrossRef
18.
Zurück zum Zitat Y. Hong, A. Zhao, and G. Qian: Acta Metall. Sinica, 2009, vol. 45, pp. 769–80. Y. Hong, A. Zhao, and G. Qian: Acta Metall. Sinica, 2009, vol. 45, pp. 769–80.
19.
Zurück zum Zitat G. Qian, C. Zhou, and Y. Hong: Acta Mater., 2011, vol. 59, pp. 1321–27.CrossRef G. Qian, C. Zhou, and Y. Hong: Acta Mater., 2011, vol. 59, pp. 1321–27.CrossRef
20.
Zurück zum Zitat E. Takeuchi, Y. Furuya, N. Nagashima, and S. Matsuoka: Fatigue Fract. Eng. Mater. Struct., 2008, vol. 31, pp. 599–605.CrossRef E. Takeuchi, Y. Furuya, N. Nagashima, and S. Matsuoka: Fatigue Fract. Eng. Mater. Struct., 2008, vol. 31, pp. 599–605.CrossRef
21.
Zurück zum Zitat C. Sun, A. Zhao, and Y. Hong: Struct. Longevity, 2011, vol. 045, pp. 1–12. C. Sun, A. Zhao, and Y. Hong: Struct. Longevity, 2011, vol. 045, pp. 1–12.
22.
23.
Zurück zum Zitat T. Sakai, Y. Sato, Y. Nagano, M. Takeda, and N. Oguma: Int. J. Fatigue, 2006, vol. 28, pp. 1547–54.CrossRef T. Sakai, Y. Sato, Y. Nagano, M. Takeda, and N. Oguma: Int. J. Fatigue, 2006, vol. 28, pp. 1547–54.CrossRef
24.
Zurück zum Zitat K. Shiozawa, Y. Morii, S. Nishino, and L. Lu: Int. J. Fatigue, 2006, vol. 28, pp. 1521–32.CrossRef K. Shiozawa, Y. Morii, S. Nishino, and L. Lu: Int. J. Fatigue, 2006, vol. 28, pp. 1521–32.CrossRef
25.
Zurück zum Zitat G. Qian and Y. Hong: Acta Metall. Sinica, 2009, vol. 45, pp. 1356–63. G. Qian and Y. Hong: Acta Metall. Sinica, 2009, vol. 45, pp. 1356–63.
26.
Zurück zum Zitat G. Qian, Y. Hong, and C. Zhou: Eng. Failure Analysis, 2010, vol. 17, pp. 1517–25.CrossRef G. Qian, Y. Hong, and C. Zhou: Eng. Failure Analysis, 2010, vol. 17, pp. 1517–25.CrossRef
27.
Zurück zum Zitat Y.L. Bai, M.F. Xia, H.Y. Wang, and F.J. Ke: China Particuology, 2003, vol. 1, pp. 7–12.CrossRef Y.L. Bai, M.F. Xia, H.Y. Wang, and F.J. Ke: China Particuology, 2003, vol. 1, pp. 7–12.CrossRef
28.
Zurück zum Zitat T. Tanaka and T. Mura: J. Appl. Mech., Trans. ASME, 1981, vol. 48, pp. 97–103.CrossRef T. Tanaka and T. Mura: J. Appl. Mech., Trans. ASME, 1981, vol. 48, pp. 97–103.CrossRef
29.
Zurück zum Zitat T. Tanaka and T. Mura: Metall. Trans. A, 1982, vol. 13A, pp. 117–23. T. Tanaka and T. Mura: Metall. Trans. A, 1982, vol. 13A, pp. 117–23.
Metadaten
Titel
Fatigue Strength and Crack Initiation Mechanism of Very-High-Cycle Fatigue for Low Alloy Steels
verfasst von
Youshi Hong
Aiguo Zhao
Guian Qian
Chengen Zhou
Publikationsdatum
01.08.2012
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 8/2012
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-011-0816-7

Weitere Artikel der Ausgabe 8/2012

Metallurgical and Materials Transactions A 8/2012 Zur Ausgabe

Symposium: Fatigue & Corrosion Damage in Metallic Materials

Environmental Effects on Fatigue Crack Growth in 7075 Aluminum Alloy

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.