Skip to main content
Erschienen in: Neural Computing and Applications 7/2024

06.12.2023 | Original Article

Fault-attri-attention: a method for fault identification based on seismic attributes attention

verfasst von: Xiao Li, Kewen Li

Erschienen in: Neural Computing and Applications | Ausgabe 7/2024

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The imaging principle of seismic images is different from natural images, which results in very limited resolution, complex reflection features and strong uncertainty of seismic images. The fault interpretation methods based on seismic attribute analysis have been widely applied in the industry. However, the seismic attribute has inherent limitations and strong multiplicity. In order to overcome the limitations and multiplicity, a method for fault identification based on seismic attributes attention is proposed to enhance the expression ability of seismic multi-attributes fusion in fault identification tasks. Specifically, the fault identification model is proposed to achieve multi-objective joint prediction by fusing seismic multi-attributes. The seismic attributes attention mechanism named Fault-Attri-Attention is proposed to adaptively extract seismic attributes attention according to the difference in contributions of seismic attributes to fault identification tasks, which can obtain the optimal seismic multi-attributes fusion output. The multi-scales TransBlock module is proposed to enhance the feature expression of seismic attributes with different scales. Experimental results show that the fault identification method based on seismic attributes attention can achieve complementary multi-scales features information, which ensures the independence of seismic attributes and the integrity of multivariate information.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wu X, Fomel S (2018) Automatic fault interpretation with optimal surface voting. Geophysics 83(5):O67–O82 Wu X, Fomel S (2018) Automatic fault interpretation with optimal surface voting. Geophysics 83(5):O67–O82
2.
Zurück zum Zitat Geng Z, Wang Y (2020) Physics-guided deep learning for predicting geological drilling risk of wellbore instability using seismic attributes data. Eng Geol 279:105857 Geng Z, Wang Y (2020) Physics-guided deep learning for predicting geological drilling risk of wellbore instability using seismic attributes data. Eng Geol 279:105857
3.
Zurück zum Zitat Lyu B, Qi J, Sinha S et al. (2020) Improving fault delineation using maximum entropy multispectral coherence. Interpretation 8(4):1–76 Lyu B, Qi J, Sinha S et al. (2020) Improving fault delineation using maximum entropy multispectral coherence. Interpretation 8(4):1–76
4.
Zurück zum Zitat Sergius D, Jan W, Andreas H et al. (2021) Categorizing and correlating diffractivity attributes with seismic reflection attributes using auto-encoder networks. Geophysics 85(4):59–70 Sergius D, Jan W, Andreas H et al. (2021) Categorizing and correlating diffractivity attributes with seismic reflection attributes using auto-encoder networks. Geophysics 85(4):59–70
5.
Zurück zum Zitat Chopra S, Marfurt K J (2005) Seismic Attributes-A Historical Perspective. Geophysics 70(5): 3SO-28SO Chopra S, Marfurt K J (2005) Seismic Attributes-A Historical Perspective. Geophysics 70(5): 3SO-28SO
6.
Zurück zum Zitat Shafiq MA, Alshawi T, Long Z et al. (2016) Salsi: A new seismic attribute for salt dome detection. IEEE Int Conf Acoust Speech Signal Process 14:1876–1880 Shafiq MA, Alshawi T, Long Z et al. (2016) Salsi: A new seismic attribute for salt dome detection. IEEE Int Conf Acoust Speech Signal Process 14:1876–1880
7.
Zurück zum Zitat Wang S, Yuan S, Yan B et al. (2016) Directional complex-valued coherence attributes for discontinuous edge detection. J Appl Geophys 129:1–7 Wang S, Yuan S, Yan B et al. (2016) Directional complex-valued coherence attributes for discontinuous edge detection. J Appl Geophys 129:1–7
8.
Zurück zum Zitat Lou Y, Zhang B, Wang R et al. (2019) Seismic fault attribute estimation using a local fault model. Geophysics 84(4):73–80ADS Lou Y, Zhang B, Wang R et al. (2019) Seismic fault attribute estimation using a local fault model. Geophysics 84(4):73–80ADS
9.
Zurück zum Zitat Di H, Shafiq MA, Wang Z et al. (2019) Improving seismic fault detection by super-attribute-based classification. Interpretation 7(3):1–56 Di H, Shafiq MA, Wang Z et al. (2019) Improving seismic fault detection by super-attribute-based classification. Interpretation 7(3):1–56
10.
Zurück zum Zitat Di H, Alregib G (2019) Semiautomatic fault/fracture interpretation based on seismic geometry analysis. Geophys Prospect 67(5):1379–1391ADS Di H, Alregib G (2019) Semiautomatic fault/fracture interpretation based on seismic geometry analysis. Geophys Prospect 67(5):1379–1391ADS
11.
Zurück zum Zitat Laake A (2013) Structural interpretation in color: A new RGB processing techniques for extracting geological structures from seismic data. SEG Technical Program Expanded Abstracts 1472-1476 Laake A (2013) Structural interpretation in color: A new RGB processing techniques for extracting geological structures from seismic data. SEG Technical Program Expanded Abstracts 1472-1476
12.
Zurück zum Zitat Wang Z, Temel D, AlRegib G (2014) Fault detection using color blending and color transformations. IEEE Global Conference on Signal and Information Processing 999-1003 Wang Z, Temel D, AlRegib G (2014) Fault detection using color blending and color transformations. IEEE Global Conference on Signal and Information Processing 999-1003
13.
Zurück zum Zitat Chen C, He X, Guo B et al. (2020) A pixel-level fusion method for multi-source optical remote sensing image combining the principal component analysis and curvelet transform. Earth Sci Inform 13:1005–1013 Chen C, He X, Guo B et al. (2020) A pixel-level fusion method for multi-source optical remote sensing image combining the principal component analysis and curvelet transform. Earth Sci Inform 13:1005–1013
14.
Zurück zum Zitat Su M, Liu Y, Xue Y et al. (2021) Detection method of karst features around tunnel construction by multi-resistivity data-fusion pseudo-3D-imaging based on the PCA approach. Eng Geol 28:106–127 Su M, Liu Y, Xue Y et al. (2021) Detection method of karst features around tunnel construction by multi-resistivity data-fusion pseudo-3D-imaging based on the PCA approach. Eng Geol 28:106–127
15.
Zurück zum Zitat Marzieh M, Hosein H (2022) Semi-supervised fuzzy clustering for facies analysis using extended elastic impedance seismic attributes. Geophysics 87(4):75–84 Marzieh M, Hosein H (2022) Semi-supervised fuzzy clustering for facies analysis using extended elastic impedance seismic attributes. Geophysics 87(4):75–84
16.
Zurück zum Zitat Mohamed IA, Hemdan M, Hosny A et al. (2019) High-resolution water-saturation prediction using geo-statistical inversion and neural network methods. Interpretation 7(2):1–40 Mohamed IA, Hemdan M, Hosny A et al. (2019) High-resolution water-saturation prediction using geo-statistical inversion and neural network methods. Interpretation 7(2):1–40
17.
Zurück zum Zitat Odoh BI, Ilechukwu JN, Okoli NI (2014) The use of seismic attributes to enhance fault interpretation of OT field, Niger delta. Int J Geosci 5:826–834 Odoh BI, Ilechukwu JN, Okoli NI (2014) The use of seismic attributes to enhance fault interpretation of OT field, Niger delta. Int J Geosci 5:826–834
18.
Zurück zum Zitat Di H, Shafiq A, AlRegib G (2017) Seismic fault detection based on multi-attribute support vector machine analysis. SEG Technical Program Extended Abstracts: 2039-2044 Di H, Shafiq A, AlRegib G (2017) Seismic fault detection based on multi-attribute support vector machine analysis. SEG Technical Program Extended Abstracts: 2039-2044
19.
Zurück zum Zitat Chen J, Lu Y, Yu Q, et al. (2021) TransUNet: transformers make strong encoders for medical image segmentation. Comput Vis Patt Recogn Chen J, Lu Y, Yu Q, et al. (2021) TransUNet: transformers make strong encoders for medical image segmentation. Comput Vis Patt Recogn
20.
Zurück zum Zitat Zheng S, Lu J, Zhao H, et al (2021) Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C]. Comput Vis Patt Recogn 6877-6886 Zheng S, Lu J, Zhao H, et al (2021) Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C]. Comput Vis Patt Recogn 6877-6886
21.
Zurück zum Zitat He X, Zhou Y, Zhao J et al (2022) Swin transformer embedding UNet for remote sensing image semantic segmentation. IEEE Trans Geosci Remote Sens 60:1–15 He X, Zhou Y, Zhao J et al (2022) Swin transformer embedding UNet for remote sensing image semantic segmentation. IEEE Trans Geosci Remote Sens 60:1–15
22.
Zurück zum Zitat Pu M, Huang Y, Liu Y, et al (2022) EDTER: edge detection with transformer. IEEE/CVF Conf Comput Vis Patt Recogn 1392-1402 Pu M, Huang Y, Liu Y, et al (2022) EDTER: edge detection with transformer. IEEE/CVF Conf Comput Vis Patt Recogn 1392-1402
23.
Zurück zum Zitat Saad OM, Bai M, Samy L et al (2021) Self-attention deep image prior network for unsupervised 3D seismic data enhancement. IEEE Trans Geosci Remote Sens 60:1–14 Saad OM, Bai M, Samy L et al (2021) Self-attention deep image prior network for unsupervised 3D seismic data enhancement. IEEE Trans Geosci Remote Sens 60:1–14
24.
Zurück zum Zitat Wang D, Yang R (2023) P-Swin: Parallel Swin transformer multi-scale semantic segmentation network for land cover classification. Computers and Geosciences 175:105340 Wang D, Yang R (2023) P-Swin: Parallel Swin transformer multi-scale semantic segmentation network for land cover classification. Computers and Geosciences 175:105340
25.
Zurück zum Zitat Guo M, Liu Z, Mu T et al (2022) Beyond self-attention: external attention using two linear layers for visual tasks. IEEE Trans Pattern Anal Mach Intell 45(5):5436–5447 Guo M, Liu Z, Mu T et al (2022) Beyond self-attention: external attention using two linear layers for visual tasks. IEEE Trans Pattern Anal Mach Intell 45(5):5436–5447
26.
Zurück zum Zitat Lin L, Zhong Z, Cai Z et al (2022) Automatic geologic fault identification from seismic data using 2.5D channel attention U-net. Geophysics 4:87 Lin L, Zhong Z, Cai Z et al (2022) Automatic geologic fault identification from seismic data using 2.5D channel attention U-net. Geophysics 4:87
27.
Zurück zum Zitat Hu J, Shen L, Albanie S et al (2020) Squeeze-and-excitation networks. IEEE Trans Pattern Anal Mach Intell 42(8):2011–2023PubMed Hu J, Shen L, Albanie S et al (2020) Squeeze-and-excitation networks. IEEE Trans Pattern Anal Mach Intell 42(8):2011–2023PubMed
28.
Zurück zum Zitat Jaderberg M, Simonyan K, Zisserman A, et al (2015) Spatial transformer networks. The 28th International Conference on Neural Information Processing Systems 2: 2017-2025 Jaderberg M, Simonyan K, Zisserman A, et al (2015) Spatial transformer networks. The 28th International Conference on Neural Information Processing Systems 2: 2017-2025
29.
Zurück zum Zitat Qu Y, Xia M, Zhang Y (2021) Strip pooling channel spatial attention network for the segmentation of cloud and cloud shadow. Comput Geosci 157:104940 Qu Y, Xia M, Zhang Y (2021) Strip pooling channel spatial attention network for the segmentation of cloud and cloud shadow. Comput Geosci 157:104940
30.
Zurück zum Zitat Zhang Z, Lin Z, Xu J et al (2021) Bilateral attention network for RGB-D salient object detection. IEEE Trans Image Process 30:1949–1961PubMedADS Zhang Z, Lin Z, Xu J et al (2021) Bilateral attention network for RGB-D salient object detection. IEEE Trans Image Process 30:1949–1961PubMedADS
31.
Zurück zum Zitat Li G, Li L, Zhang J (2022) BiAttnNet: Bilateral attention for improving real time semantic segmentation. IEEE Signal Process Lett 29:46–50ADS Li G, Li L, Zhang J (2022) BiAttnNet: Bilateral attention for improving real time semantic segmentation. IEEE Signal Process Lett 29:46–50ADS
32.
Zurück zum Zitat Wu X, Liang L, Shi Y et al (2019) FaultSeg3D: using synthetic datasets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. Geophysics 2019:1–36 Wu X, Liang L, Shi Y et al (2019) FaultSeg3D: using synthetic datasets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. Geophysics 2019:1–36
33.
Zurück zum Zitat Li W, Yue D, Wang W et al (2019) Fusing multiple frequency-decomposed seismic attributes with machine learning for thickness prediction and sedimentary facies interpretation in fluvial reservoirs. J Petrol Sci Eng 177:1087–1102 Li W, Yue D, Wang W et al (2019) Fusing multiple frequency-decomposed seismic attributes with machine learning for thickness prediction and sedimentary facies interpretation in fluvial reservoirs. J Petrol Sci Eng 177:1087–1102
34.
Zurück zum Zitat Dell S, Walda J, Hoelker A et al (2021) Categorizing and correlating diffractivity attributes with seismic reflection attributes using auto-encoder networks. Geophysics 85(4):59–70 Dell S, Walda J, Hoelker A et al (2021) Categorizing and correlating diffractivity attributes with seismic reflection attributes using auto-encoder networks. Geophysics 85(4):59–70
35.
Zurück zum Zitat Wang X, Zhang B, Zhao T et al (2017) Facies analysis by integrating 3D seismic attributes and well logs for prospect identification and evaluation-A case study from Northwest China. Interpretation 5(2):SE61–SE74 Wang X, Zhang B, Zhao T et al (2017) Facies analysis by integrating 3D seismic attributes and well logs for prospect identification and evaluation-A case study from Northwest China. Interpretation 5(2):SE61–SE74
36.
Zurück zum Zitat Li W, Yue D, Wu S et al (2019) Characterizing meander belts and point bars in fluvial reservoirs by combining spectral decomposition and genetic inversion. Marine Petrol Geol 105:168–184ADS Li W, Yue D, Wu S et al (2019) Characterizing meander belts and point bars in fluvial reservoirs by combining spectral decomposition and genetic inversion. Marine Petrol Geol 105:168–184ADS
37.
Zurück zum Zitat Yue D, Li W, Wang W et al (2019) Fused spectral-decomposition seismic attributes and forward seismic modelling to predict sand bodies in meandering fluvial reservoirs. Marine Petrol Geol 99:27–44ADS Yue D, Li W, Wang W et al (2019) Fused spectral-decomposition seismic attributes and forward seismic modelling to predict sand bodies in meandering fluvial reservoirs. Marine Petrol Geol 99:27–44ADS
38.
Zurück zum Zitat Zeng H (2010) Geologic significance of anomalous instantaneous frequency. Geophysics 75(3):P23–P30 Zeng H (2010) Geologic significance of anomalous instantaneous frequency. Geophysics 75(3):P23–P30
39.
Zurück zum Zitat Li W, Yue D, Wu S et al (2020) Thickness prediction for high-resolution stratigraphic interpretation by fusing seismic attributes of target and neighboring zones with an SVR algorithm[J]. Marine Petrol Geol 113:104153 Li W, Yue D, Wu S et al (2020) Thickness prediction for high-resolution stratigraphic interpretation by fusing seismic attributes of target and neighboring zones with an SVR algorithm[J]. Marine Petrol Geol 113:104153
40.
Zurück zum Zitat Maleki M, Davolio A, Schiozer DJ (2019) Quantitative integration of 3D and 4D seismic impedance into reservoir simulation model updating in the Norne Field. Geophys Prospect 67(1):167–187ADS Maleki M, Davolio A, Schiozer DJ (2019) Quantitative integration of 3D and 4D seismic impedance into reservoir simulation model updating in the Norne Field. Geophys Prospect 67(1):167–187ADS
41.
Zurück zum Zitat Li W, Yue D, Colombera L et al (2021) Quantitative prediction of fluvial sandbodies by combining Seismic sttributes of neighboring zones. J Pet Sci Eng 196:107749 Li W, Yue D, Colombera L et al (2021) Quantitative prediction of fluvial sandbodies by combining Seismic sttributes of neighboring zones. J Pet Sci Eng 196:107749
42.
Zurück zum Zitat Wei X, Zhang C, Kim SW et al (2022) Seismic fault detection using convolutional neural networks with focal loss. Comput Geosci 158:104968 Wei X, Zhang C, Kim SW et al (2022) Seismic fault detection using convolutional neural networks with focal loss. Comput Geosci 158:104968
43.
Zurück zum Zitat Li X, Li K, Xu Z et al (2023) Fault-Seg-Net: a method for seismic fault segmentation based on multi-scale feature fusion with imbalanced classification. Comput Geotech 158:105412 Li X, Li K, Xu Z et al (2023) Fault-Seg-Net: a method for seismic fault segmentation based on multi-scale feature fusion with imbalanced classification. Comput Geotech 158:105412
44.
Zurück zum Zitat Li X, Li K (2022) Imbalanced data classification based on improved EIWAPSO-AdaBoost-C ensemble algorithm. Appl Intell 52:6477–6502 Li X, Li K (2022) Imbalanced data classification based on improved EIWAPSO-AdaBoost-C ensemble algorithm. Appl Intell 52:6477–6502
45.
Zurück zum Zitat Lin TY, Goyal P, Girshick R et al (2017) Focal loss for dense object detection. IEEE Int Conf Comput Vis 2017:2999–3007 Lin TY, Goyal P, Girshick R et al (2017) Focal loss for dense object detection. IEEE Int Conf Comput Vis 2017:2999–3007
46.
Zurück zum Zitat Li X, He M, Li H et al (2022) A combined loss based multi-scale fully convolutional network for high-resolution remote sensing image change detection. IEEE Geosci Remote Sens Lett 19:1–5 Li X, He M, Li H et al (2022) A combined loss based multi-scale fully convolutional network for high-resolution remote sensing image change detection. IEEE Geosci Remote Sens Lett 19:1–5
47.
Zurück zum Zitat Mohammed N N, Mohammed C J (2021) Enhanced Determination of Gene Groups Based on Optimal Kernel PCA with Hierarchical Clustering Algorithm. 2021 55th Annual Conference on Information Sciences and Systems Mohammed N N, Mohammed C J (2021) Enhanced Determination of Gene Groups Based on Optimal Kernel PCA with Hierarchical Clustering Algorithm. 2021 55th Annual Conference on Information Sciences and Systems
48.
Zurück zum Zitat Song Z, Yuan S, Li Z et al (2022) KNN-based gas-bearing prediction using local waveform similarity gas-indication attribute: An application to a tight sandstone reservoir. Interpretation 1:10 Song Z, Yuan S, Li Z et al (2022) KNN-based gas-bearing prediction using local waveform similarity gas-indication attribute: An application to a tight sandstone reservoir. Interpretation 1:10
49.
Zurück zum Zitat Amir I, Hatem FE, Sahar N (2022) Gas channels and chimneys prediction using artificial neural networks and multi-seismic attributes, offshore West Nile Delta Egypt. J Pet Sci Eng 208:109349 Amir I, Hatem FE, Sahar N (2022) Gas channels and chimneys prediction using artificial neural networks and multi-seismic attributes, offshore West Nile Delta Egypt. J Pet Sci Eng 208:109349
50.
Zurück zum Zitat Bin K, Long Y, Tong X, et al (2022) Ground moving target detection with seismic fractal features. IEEE Geosci Remote Sens Lett. 19 Bin K, Long Y, Tong X, et al (2022) Ground moving target detection with seismic fractal features. IEEE Geosci Remote Sens Lett. 19
51.
Zurück zum Zitat Dou Y, Li K, Zhu J et al (2021) Attention based 3D seismic fault segmentation yraining by a few 2D slice labels. IEEE Trans Geosci Remote Sens 99:1–15 Dou Y, Li K, Zhu J et al (2021) Attention based 3D seismic fault segmentation yraining by a few 2D slice labels. IEEE Trans Geosci Remote Sens 99:1–15
52.
Zurück zum Zitat Trebing K, Stanczyk T, Mehrkanoon S (2021) SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture. Pattern Recogn Lett 145:178–186ADS Trebing K, Stanczyk T, Mehrkanoon S (2021) SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture. Pattern Recogn Lett 145:178–186ADS
53.
Zurück zum Zitat Gao K, Huang L, Zheng Y et al (2022) Automatic fault detection on seismic images using a multiscale attention convolutional neural network. Geophysics 1:87 Gao K, Huang L, Zheng Y et al (2022) Automatic fault detection on seismic images using a multiscale attention convolutional neural network. Geophysics 1:87
54.
Zurück zum Zitat Sandler M, Howard A, Zhu M et al (2018) Mobilenetv 2: Inverted residuals and linear bottlenecks. IEEE Conf Comput Vis Pattern Recogn 2018:4510–4520 Sandler M, Howard A, Zhu M et al (2018) Mobilenetv 2: Inverted residuals and linear bottlenecks. IEEE Conf Comput Vis Pattern Recogn 2018:4510–4520
55.
Zurück zum Zitat Ma N, Zhang X, Zheng HT et al. (2018) ShufflenetV2: Practical guidelines for efficient cnn architecture design. Eur Conf Comput Vis 2018:116–131ADS Ma N, Zhang X, Zheng HT et al. (2018) ShufflenetV2: Practical guidelines for efficient cnn architecture design. Eur Conf Comput Vis 2018:116–131ADS
56.
Zurück zum Zitat Li G, Yun I, Kim J, Kim J (2019) DABNet: Depthwise asymmetric bottleneck for real-time semantic segmentation. 2019 British Machine Vision Conference Li G, Yun I, Kim J, Kim J (2019) DABNet: Depthwise asymmetric bottleneck for real-time semantic segmentation. 2019 British Machine Vision Conference
57.
Zurück zum Zitat Yu C, Gao C, Wang J. et al. (2021) BiSeNetV2: Bilateral network with guided aggregation for real-Time semantic segmentation. Int J Comput Vis. 3051-3068 Yu C, Gao C, Wang J. et al. (2021) BiSeNetV2: Bilateral network with guided aggregation for real-Time semantic segmentation. Int J Comput Vis. 3051-3068
58.
Zurück zum Zitat Oktay O, Schlemper J, Folgoc L L, et al. (2018) Attention U-Net: learning where to look for the pancreas. 2018 Computer Vision and Pattern Recognition Oktay O, Schlemper J, Folgoc L L, et al. (2018) Attention U-Net: learning where to look for the pancreas. 2018 Computer Vision and Pattern Recognition
Metadaten
Titel
Fault-attri-attention: a method for fault identification based on seismic attributes attention
verfasst von
Xiao Li
Kewen Li
Publikationsdatum
06.12.2023
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 7/2024
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-023-09265-7

Weitere Artikel der Ausgabe 7/2024

Neural Computing and Applications 7/2024 Zur Ausgabe