Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

12.09.2018 | S.I.: Emerging Intelligent Algorithms for Edge-of-Things Computing | Ausgabe 5/2019

Neural Computing and Applications 5/2019

Fault classification and detection in wind turbine using Cuckoo-optimized support vector machine

Zeitschrift:
Neural Computing and Applications > Ausgabe 5/2019
Autoren:
A. Agasthian, Rajendra Pamula, L. A. Kumaraswamidhas

Abstract

Fault detection in wind turbine which is identified with complete system monitoring under multi-fault scenario is proposed. When a fault is detected, its types and location are recognized for easy maintenance. Fault in wind turbines is caused due to the high speed of gearbox, generator bearing and the failures occurred in various parts. In wind farm, wind turbine condition monitoring is used to reduce the maintenance cost and also improves the accuracy. Generally, in wind turbine gearbox condition monitoring using sensor is a gainful method to monitor wind turbine performance and fault. This paper nominates a method to decide the parameters for support vector machine (SVM) in wind turbine called Cuckoo search optimization (CSO). The combination of optimization technique with classification technique is evaluated. MATLAB platform was used to evaluate the various faults under fixed value and gain factor conditions. Comparing the accuracy with SVM, particle swarm optimized SVM and k-nearest neighbor, the proposed fault detection and fault isolation technique (CSO-SVM) is improved by 2.5%, 3.5% and 6.5%, respectively. The result shows the CSO model based on SVM algorithm accomplishes the most accurate fault detection than the past models.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2019

Neural Computing and Applications 5/2019 Zur Ausgabe

S.I. : Emerging Intelligent Algorithms for Edge-of-Things Computing

EoT-driven hybrid ambient assisted living framework with naïve Bayes–firefly algorithm

S.I. : Emerging Intelligent Algorithms for Edge-of-Things Computing

Abnormal event detection with semi-supervised sparse topic model

S.I. : Emerging Intelligent Algorithms for Edge-of-Things Computing

A new and efficient firefly algorithm for numerical optimization problems

S.I. : Emerging Intelligent Algorithms for Edge-of-Things Computing

Deep learning model for home automation and energy reduction in a smart home environment platform

Premium Partner

    Bildnachweise