Skip to main content
Erschienen in: Journal of Electronic Testing 1/2011

01.02.2011

Fault Diagnosis in Lab-on-Chip Using Digital Microfluidic Logic Gates

verfasst von: Yang Zhao, Krishnendu Chakrabarty

Erschienen in: Journal of Electronic Testing | Ausgabe 1/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fault diagnosis is needed for a lab-on-chip to facilitate defect tolerance using reconfiguration. Previously proposed techniques for reading test outcomes and for pulse-sequence analysis are cumbersome and error-prone. We present a fault-diagnosis method to locate a single defective cell and multiple rows/columns with defective cells in a digital microfluidic array. The proposed method can also locate an unknown number of rows/columns-under-test with defective cells. It utilizes digital microfluidic exclusive-or gates to implement an output compactor. The microfluidic compactor can compress 2 r distinct test outcomes to a r-droplet signature. This approach obviates the need for capacitive sensing test-outcome circuits for analysis. We analyze the probability of misdiagnosis and use the compression ratio as a measure to evaluate the proposed fault-diagnosis method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
2.
Zurück zum Zitat Chakrabarty K, Su F (2006) Digital microfluidic biochips: synthesis, testing, and reconfiguration techniques. CRC Press, Boca RatonCrossRef Chakrabarty K, Su F (2006) Digital microfluidic biochips: synthesis, testing, and reconfiguration techniques. CRC Press, Boca RatonCrossRef
3.
Zurück zum Zitat Fair RB et al (2007) Chemical and biological applications of digital-microfluidic devices. IEEE Des Test Comput 24:10–24CrossRef Fair RB et al (2007) Chemical and biological applications of digital-microfluidic devices. IEEE Des Test Comput 24:10–24CrossRef
4.
Zurück zum Zitat Fair RB, Srinivasan V, Ren H, Paik P, Pamula VK, Pollack MG (2003) Electrowetting-based on-chip sample processing for integrated microfluidics. In: Proc. IEEE int. electron devices meet., pp 32.5.1–32.5.4 Fair RB, Srinivasan V, Ren H, Paik P, Pamula VK, Pollack MG (2003) Electrowetting-based on-chip sample processing for integrated microfluidics. In: Proc. IEEE int. electron devices meet., pp 32.5.1–32.5.4
5.
Zurück zum Zitat Fan S-K et al (2003) Manipulation of multiple droplets on N × M grid by cross-reference EWOD driving scheme and pressure-contact packaging. In: Proc. int. conf. MEMS, pp 694–697 Fan S-K et al (2003) Manipulation of multiple droplets on N × M grid by cross-reference EWOD driving scheme and pressure-contact packaging. In: Proc. int. conf. MEMS, pp 694–697
6.
Zurück zum Zitat Gayem Q, Liu H, Richardson A, Burd N (2009) Built-in test solutions for the electrode structures in bio-fluidic microsystems. In: Proc. ETS, pp 73–78 Gayem Q, Liu H, Richardson A, Burd N (2009) Built-in test solutions for the electrode structures in bio-fluidic microsystems. In: Proc. ETS, pp 73–78
7.
Zurück zum Zitat Griffith EJ, Akella S, Goldberg MK (2006) Performance characterization of a reconfigurable planar-array digital microfluidic system. IEEE Trans CAD 25:345–357 Griffith EJ, Akella S, Goldberg MK (2006) Performance characterization of a reconfigurable planar-array digital microfluidic system. IEEE Trans CAD 25:345–357
8.
Zurück zum Zitat Huang T-W, Lin C-H, Ho T-Y (2009) A contamination aware droplet routing algorithm for digital microfluidic biochips. In: Proc. ICCAD, pp 151–156 Huang T-W, Lin C-H, Ho T-Y (2009) A contamination aware droplet routing algorithm for digital microfluidic biochips. In: Proc. ICCAD, pp 151–156
9.
Zurück zum Zitat Kerkhoff HG (2007) Testing microelectronic biofluidic systems. IEEE Des Test Comput 24:72–82CrossRef Kerkhoff HG (2007) Testing microelectronic biofluidic systems. IEEE Des Test Comput 24:72–82CrossRef
10.
Zurück zum Zitat Kerkhoff HG, Acar M (2003) Testable design and testing of micro-electrofluidic arrays. In: Proc. VTS, pp 403–409 Kerkhoff HG, Acar M (2003) Testable design and testing of micro-electrofluidic arrays. In: Proc. VTS, pp 403–409
11.
Zurück zum Zitat Kerkhoff HG, Hendriks HPA (2001) Fault modeling and fault simulation in mixed micro-fluidic microelectronic systems. J Electron Test Theory Appl 17:427–437CrossRef Kerkhoff HG, Hendriks HPA (2001) Fault modeling and fault simulation in mixed micro-fluidic microelectronic systems. J Electron Test Theory Appl 17:427–437CrossRef
12.
Zurück zum Zitat Luan L, Evans RD, Jokerst NM, Fair RB (2008) Integrated optical sensor in a digital microfluidic platform. IEEE Sens J 8:628–635CrossRef Luan L, Evans RD, Jokerst NM, Fair RB (2008) Integrated optical sensor in a digital microfluidic platform. IEEE Sens J 8:628–635CrossRef
13.
Zurück zum Zitat Maftei E, Pop P, Madsen J, Stidsen T (2008) Placement-aware architectural synthesis of digital microfluidic biochips using ILP. In: Proc. international conference on very large scale integration of system on chip, pp 425–430 Maftei E, Pop P, Madsen J, Stidsen T (2008) Placement-aware architectural synthesis of digital microfluidic biochips using ILP. In: Proc. international conference on very large scale integration of system on chip, pp 425–430
14.
Zurück zum Zitat Marr DWM, Munakata T (2007) Micro/nanofluidic computing. Commun ACM 50:64–68CrossRef Marr DWM, Munakata T (2007) Micro/nanofluidic computing. Commun ACM 50:64–68CrossRef
15.
Zurück zum Zitat Moon H, Wheeler AR, Garrell RL, Loo JA Kim C-J (2006) An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS. Lab on a Chip 6:1213–1219CrossRef Moon H, Wheeler AR, Garrell RL, Loo JA Kim C-J (2006) An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS. Lab on a Chip 6:1213–1219CrossRef
16.
Zurück zum Zitat Pless V (1982) Introduction to the theory of error-correcting codes. Wiley, New YorkMATH Pless V (1982) Introduction to the theory of error-correcting codes. Wiley, New YorkMATH
17.
Zurück zum Zitat Pollack MG (2001) Electrowetting-based microactuation of droplets for digital microfluidics. PhD thesis, Duke University Pollack MG (2001) Electrowetting-based microactuation of droplets for digital microfluidics. PhD thesis, Duke University
18.
Zurück zum Zitat Prakash M, Gershenfeld N (2007) Microfluidic bubble logic. Science 315:832–835CrossRef Prakash M, Gershenfeld N (2007) Microfluidic bubble logic. Science 315:832–835CrossRef
19.
Zurück zum Zitat Ricketts AJ, Irick K, Vijaykrishnan N, Irwin MJ (2006) Priority scheduling in digital microfluidics-based biochips. In: Proc. DATE conf., pp 329–334 Ricketts AJ, Irick K, Vijaykrishnan N, Irwin MJ (2006) Priority scheduling in digital microfluidics-based biochips. In: Proc. DATE conf., pp 329–334
20.
Zurück zum Zitat Srinivasan V, Pamula VK, Pollack MG, Fair RB (2003) Clinical diagnositics on human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic platform. In: Proc. MicroTAS, pp 1287–1290 Srinivasan V, Pamula VK, Pollack MG, Fair RB (2003) Clinical diagnositics on human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic platform. In: Proc. MicroTAS, pp 1287–1290
21.
Zurück zum Zitat Su F et al (2005) Defect-oriented testing and diagnosis of digital microfluidics-based biochips. In: Proc. ITC, pp 487–496 Su F et al (2005) Defect-oriented testing and diagnosis of digital microfluidics-based biochips. In: Proc. ITC, pp 487–496
22.
Zurück zum Zitat Su F, Chakrabarty K, Fair RB (2006) Microfluidics-based biochips: technology issues, implementation platforms, and design automation challenges. IEEE Trans CAD 25:211–223 Su F, Chakrabarty K, Fair RB (2006) Microfluidics-based biochips: technology issues, implementation platforms, and design automation challenges. IEEE Trans CAD 25:211–223
23.
Zurück zum Zitat Su F, Hwang W, Mukherjee A, Chakrabarty K (2007) Testing and diagnosis of realistic defects in digital microfluidic biochips. JETTA 23:219–233 Su F, Hwang W, Mukherjee A, Chakrabarty K (2007) Testing and diagnosis of realistic defects in digital microfluidic biochips. JETTA 23:219–233
24.
Zurück zum Zitat Su F, Ozev S, Chakrabarty K (2003) Testing of droplet-based microelectrofluidic systems. In: Proc. int. test conf., pp 1192–1200 Su F, Ozev S, Chakrabarty K (2003) Testing of droplet-based microelectrofluidic systems. In: Proc. int. test conf., pp 1192–1200
25.
Zurück zum Zitat Su F, Ozev S, Chakrabarty K (2006) Concurrent testing of digital microfluidics-based biochips. ACM Trans Des Automat Electron Syst 11:442–464CrossRef Su F, Ozev S, Chakrabarty K (2006) Concurrent testing of digital microfluidics-based biochips. ACM Trans Des Automat Electron Syst 11:442–464CrossRef
26.
Zurück zum Zitat Su F, Zeng J (2007) Computer-aided design and test for digital microfluidics. IEEE Des Test Comput 24:60–70CrossRef Su F, Zeng J (2007) Computer-aided design and test for digital microfluidics. IEEE Des Test Comput 24:60–70CrossRef
27.
Zurück zum Zitat Tartagni M, Guerrieri R (1998) A fingerprint sensor based on the feedback capacitive sensing scheme. IEEE J Solid-State Circuits 33:133–142CrossRef Tartagni M, Guerrieri R (1998) A fingerprint sensor based on the feedback capacitive sensing scheme. IEEE J Solid-State Circuits 33:133–142CrossRef
28.
Zurück zum Zitat Vestad T et al (2004) Flow resistance for microfluidic logic operations. Appl Phys Lett 84(25):5074–5075CrossRef Vestad T et al (2004) Flow resistance for microfluidic logic operations. Appl Phys Lett 84(25):5074–5075CrossRef
30.
Zurück zum Zitat Xu T, Chakrabarty K (2007) Parallel scan-like test and multiple-defect diagnosis for digital microfluidic biochips. IEEE Trans Biomedical Circuits and Sys 1:148–158CrossRef Xu T, Chakrabarty K (2007) Parallel scan-like test and multiple-defect diagnosis for digital microfluidic biochips. IEEE Trans Biomedical Circuits and Sys 1:148–158CrossRef
31.
Zurück zum Zitat Xu T, Chakrabarty K (2008) Broadcast electrode-addressing for pin-constrained multi-functional digital microfluidic biochips. In: Proc. DAC, pp 173–178 Xu T, Chakrabarty K (2008) Broadcast electrode-addressing for pin-constrained multi-functional digital microfluidic biochips. In: Proc. DAC, pp 173–178
32.
Zurück zum Zitat Xu T, Chakrabarty K (2009) Design-for-testability for digital microfluidic biochips. In: Proc. IEEE VLSI test symposium, pp 309–314 Xu T, Chakrabarty K (2009) Design-for-testability for digital microfluidic biochips. In: Proc. IEEE VLSI test symposium, pp 309–314
33.
Zurück zum Zitat Xu T, Chakrabarty K (2009) Fault modeling and functional test methods for digital microfluidic biochips. IEEE Trans Biomedical Circuits and Sys 3:241–253CrossRef Xu T, Chakrabarty K (2009) Fault modeling and functional test methods for digital microfluidic biochips. IEEE Trans Biomedical Circuits and Sys 3:241–253CrossRef
34.
Zurück zum Zitat Xu T, Chakrabarty K, Pamula VK (2008) Design and optimization of a digital microfluidic biochip for protein crystallization. In: Proc. ICCAD, pp 297–301 Xu T, Chakrabarty K, Pamula VK (2008) Design and optimization of a digital microfluidic biochip for protein crystallization. In: Proc. ICCAD, pp 297–301
35.
Zurück zum Zitat Xu T, Chakrabarty K, Pamula VK (2010) Defect-tolerant design and optimization of a digital microfluidic biochip for protein crystallization. IEEE Trans Comput-Aided Des Integrated Circ Syst 29(4):552–565CrossRef Xu T, Chakrabarty K, Pamula VK (2010) Defect-tolerant design and optimization of a digital microfluidic biochip for protein crystallization. IEEE Trans Comput-Aided Des Integrated Circ Syst 29(4):552–565CrossRef
36.
Zurück zum Zitat Xu T et al (2007) Automated design of pin-constrained digital microfluidic biochips under droplet-interference constraints. ACM J Emerging Tech Computing Sys 3, article 14 Xu T et al (2007) Automated design of pin-constrained digital microfluidic biochips under droplet-interference constraints. ACM J Emerging Tech Computing Sys 3, article 14
37.
Zurück zum Zitat Yoon J-Y, Garrell RL (2003) Preventing biomolecular adsorption in electrowetting-based biofluidic chips. Anal Chem 75:5097–5102CrossRef Yoon J-Y, Garrell RL (2003) Preventing biomolecular adsorption in electrowetting-based biofluidic chips. Anal Chem 75:5097–5102CrossRef
38.
Zurück zum Zitat Yuh P-H, Sapatnekar S, Yang C-L, Chang Y-W (2008) A progressive-ILP based routing algorithm for cross-referencing biochips. In: Proc. DAC, pp 284–289 Yuh P-H, Sapatnekar S, Yang C-L, Chang Y-W (2008) A progressive-ILP based routing algorithm for cross-referencing biochips. In: Proc. DAC, pp 284–289
39.
Zurück zum Zitat Yuh P-H, Yang C-L, Chang C-W (2007) Placement of defect-tolerant digital microfluidic biochips using the T-tree formulation. ACM J Emerging Tech Computing Sys 3:13.1–13.32 Yuh P-H, Yang C-L, Chang C-W (2007) Placement of defect-tolerant digital microfluidic biochips using the T-tree formulation. ACM J Emerging Tech Computing Sys 3:13.1–13.32
40.
Zurück zum Zitat Zeng J, Korsmeyer T (2004) Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab on a Chip 4:265–277CrossRef Zeng J, Korsmeyer T (2004) Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab on a Chip 4:265–277CrossRef
41.
Zurück zum Zitat Zhao Y, Xu T, Chakrabarty K (2008) Built-in self-test and fault diagnosis for lab-on-chip using digital microfluidic logic gates. In: Proc. IEEE international test conference Zhao Y, Xu T, Chakrabarty K (2008) Built-in self-test and fault diagnosis for lab-on-chip using digital microfluidic logic gates. In: Proc. IEEE international test conference
42.
Zurück zum Zitat Zhao Y, Chakrabarty K (2010) Digital microfluidic logic gates and their application to built-in self-test of lab-on-chip. IEEE Trans Biomedical Circuits and Sys 4:250–262CrossRef Zhao Y, Chakrabarty K (2010) Digital microfluidic logic gates and their application to built-in self-test of lab-on-chip. IEEE Trans Biomedical Circuits and Sys 4:250–262CrossRef
43.
Zurück zum Zitat Zhan W, Crooks RM (2003) Microelectrochemical logic circuits. J Am Chem Soc 125(33):9934–9935CrossRef Zhan W, Crooks RM (2003) Microelectrochemical logic circuits. J Am Chem Soc 125(33):9934–9935CrossRef
Metadaten
Titel
Fault Diagnosis in Lab-on-Chip Using Digital Microfluidic Logic Gates
verfasst von
Yang Zhao
Krishnendu Chakrabarty
Publikationsdatum
01.02.2011
Verlag
Springer US
Erschienen in
Journal of Electronic Testing / Ausgabe 1/2011
Print ISSN: 0923-8174
Elektronische ISSN: 1573-0727
DOI
https://doi.org/10.1007/s10836-010-5190-7

Weitere Artikel der Ausgabe 1/2011

Journal of Electronic Testing 1/2011 Zur Ausgabe

EditorialNotes

Editorial

Neuer Inhalt