Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

20.08.2020 | Original Article | Ausgabe 2/2021

International Journal of Machine Learning and Cybernetics 2/2021

Fault diagnosis of biological systems using improved machine learning technique

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 2/2021
Autoren:
Radhia Fezai, Kamaleldin Abodayeh, Majdi Mansouri, Hazem Nounou, Mohamed Nounou
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Fault detection and isolation (FDI) is considered as one of the most critical problems in biological processes. Therefore, in this paper, we consider a new FDI framework that aims to improve the monitoring of biological processes. To do that, a machine learning-based statistical hypothesis approach, which can identify the model, detect and isolate the faults, will be developed. In the developed approach, so-called partial Gaussian process regression (PGPR)-based generalized likelihood ratio test (GLRT), first, the GPR model that can accurately model biological processes is presented. Then, the fault detection phase is performed using the GLRT chart. Finally, the PGPR-based GLRT, which can effectively isolate the faults, is developed. The FDI performances of the developed PGPR-based GLRT approach are compared with partial support vector regression (SVR), extreme learning machines (ELM), Kernel ridge regression (KRR) and relevance vector machines (RVM)-based GLRT methods in terms of missed detection rate (MDR), false alarm rate (FAR), root mean square error (RMSE), execution time (ET) and isolation accuracy. The obtained results show that the proposed technique can reliably detect and isolate various faults using two examples: a synthetic data and a biological process representing a Cad System in E. coli (CSEC) model.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2021

International Journal of Machine Learning and Cybernetics 2/2021 Zur Ausgabe