Skip to main content
Erschienen in: Journal of Cryptographic Engineering 3/2021

24.11.2020 | Regular Paper

Fault intensity map analysis with neural network key distinguisher

verfasst von: Keyvan Ramezanpour, Paul Ampadu, William Diehl

Erschienen in: Journal of Cryptographic Engineering | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Physical cryptographic implementations are vulnerable to side-channel attacks, including fault attacks, which can be used to recover a secret key. Using a deep neural network (NN) with fault intensity map analysis (FIMA), we present a new highly efficient statistical fault injection analysis (FIA) technique called FIMA-NN. This technique employs a convolutional neural network to rank the key candidates based on multiple features in data distribution under fault with varying intensities and generalizes most existing statistical techniques including fault sensitivity analysis, differential fault intensity analysis, statistical ineffective fault analysis, and FIMA. As FIMA-NN does not rely on a single feature of data distribution, it is successful even in the presence of a wide variety of countermeasures against FIA. We introduce a generic statistical model for timing failure attacks using dynamic timing analysis of an AES S-box implemented in TSMC 65 nm technology with standard ASIC design flow. Using the simulated fault mechanism, we demonstrate that, in terms of required amount of collected ciphertexts, FIMA-NN is 12.6 times more efficient than statistical techniques using bias alone, when faulty and fault-free values are not filtered. Further, in the presence of error detection and infective countermeasures, FIMA-NN is 4.8 and 5 times more efficient than bias-alone techniques, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat 197, F.I.P.S.P.: Advanced Encryption Standard (AES) (2001) 197, F.I.P.S.P.: Advanced Encryption Standard (AES) (2001)
2.
Zurück zum Zitat Agoyan, M., Dutertre, J.M., Naccache, D., Robisson, B., Tria, A.: When clocks fail: On critical paths and clock faults. In: International Conference on Smart Card Research and Advanced Applications, pp. 182–193. Springer (2010) Agoyan, M., Dutertre, J.M., Naccache, D., Robisson, B., Tria, A.: When clocks fail: On critical paths and clock faults. In: International Conference on Smart Card Research and Advanced Applications, pp. 182–193. Springer (2010)
3.
Zurück zum Zitat Azzi, S., Barras, B., Christofi, M., Vigilant, D.: Using linear codes as a fault countermeasure for nonlinear operations: application to AES and formal verification. J. Cryptogr. Eng. 7(1), 75–85 (2017)CrossRef Azzi, S., Barras, B., Christofi, M., Vigilant, D.: Using linear codes as a fault countermeasure for nonlinear operations: application to AES and formal verification. J. Cryptogr. Eng. 7(1), 75–85 (2017)CrossRef
4.
Zurück zum Zitat Bae, H.J., Kim, C.W., Kim, N., Park, B., Kim, N., Seo, J.B., Lee, S.M.: A perlin noise-based augmentation strategy for deep learning with small data samples of hrct images. Sci. Rep. 8(1), 1–7 (2018) Bae, H.J., Kim, C.W., Kim, N., Park, B., Kim, N., Seo, J.B., Lee, S.M.: A perlin noise-based augmentation strategy for deep learning with small data samples of hrct images. Sci. Rep. 8(1), 1–7 (2018)
5.
Zurück zum Zitat Barenghi, A., Bertoni, G.M., Breveglieri, L., Pelosi, G.: A fault induction technique based on voltage underfeeding with application to attacks against aes and rsa. J. Syst. Softw. 86(7), 1864–1878 (2013)CrossRef Barenghi, A., Bertoni, G.M., Breveglieri, L., Pelosi, G.: A fault induction technique based on voltage underfeeding with application to attacks against aes and rsa. J. Syst. Softw. 86(7), 1864–1878 (2013)CrossRef
7.
Zurück zum Zitat Dobraunig, C., Eichlseder, M., Groß, H., Mangard, S., Mendel, F., Primas, R.: Statistical ineffective fault attacks on masked AES with fault countermeasures. In: International Conference on the Theory and Application of Cryptology and Information Security, pp. 315–342. Springer (2018) Dobraunig, C., Eichlseder, M., Groß, H., Mangard, S., Mendel, F., Primas, R.: Statistical ineffective fault attacks on masked AES with fault countermeasures. In: International Conference on the Theory and Application of Cryptology and Information Security, pp. 315–342. Springer (2018)
8.
Zurück zum Zitat Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.: SIFA: Exploiting ineffective fault inductions on symmetric cryptography. IACR Trans. Cryptogr. Hardw. Embedded Syst. 547–572 (2018) Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.: SIFA: Exploiting ineffective fault inductions on symmetric cryptography. IACR Trans. Cryptogr. Hardw. Embedded Syst. 547–572 (2018)
9.
Zurück zum Zitat Faranda, D., Lucarini, V., Turchetti, G., Vaienti, S.: Numerical convergence of the block-maxima approach to the generalized extreme value distribution. J. Stat. Phys. 145(5), 1156–1180 (2011)MathSciNetCrossRef Faranda, D., Lucarini, V., Turchetti, G., Vaienti, S.: Numerical convergence of the block-maxima approach to the generalized extreme value distribution. J. Stat. Phys. 145(5), 1156–1180 (2011)MathSciNetCrossRef
10.
Zurück zum Zitat Ghalaty, N.F., Yuce, B., Taha, M., Schaumont, P.: Differential fault intensity analysis. In: 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 49–58. IEEE (2014) Ghalaty, N.F., Yuce, B., Taha, M., Schaumont, P.: Differential fault intensity analysis. In: 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 49–58. IEEE (2014)
11.
Zurück zum Zitat Kang, M.J., Kang, J.W.: Intrusion detection system using deep neural network for in-vehicle network security. PloS one 11(6), e0155781 (2016)CrossRef Kang, M.J., Kang, J.W.: Intrusion detection system using deep neural network for in-vehicle network security. PloS one 11(6), e0155781 (2016)CrossRef
12.
Zurück zum Zitat Kermani, M.M., Jalali, A., Azarderakhsh, R., Xie, J., Choo, K.K.R.: Reliable inversion in \(GF(2^8)\) with redundant arithmetic for secure error detection of cryptographic architectures. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 37(3), 696–704 (2018)CrossRef Kermani, M.M., Jalali, A., Azarderakhsh, R., Xie, J., Choo, K.K.R.: Reliable inversion in \(GF(2^8)\) with redundant arithmetic for secure error detection of cryptographic architectures. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 37(3), 696–704 (2018)CrossRef
13.
Zurück zum Zitat Kim, C.H.: Differential fault analysis against aes-192 and aes-256 with minimal faults. In: 2010 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 3–9. IEEE (2010) Kim, C.H.: Differential fault analysis against aes-192 and aes-256 with minimal faults. In: 2010 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 3–9. IEEE (2010)
14.
Zurück zum Zitat Kolosnjaji, B., Demontis, A., Biggio, B., Maiorca, D., Giacinto, G., Eckert, C., Roli, F.: Adversarial malware binaries: evading deep learning for malware detection in executables. In: 2018 26th European Signal Processing Conference (EUSIPCO), pp. 533–537. IEEE (2018) Kolosnjaji, B., Demontis, A., Biggio, B., Maiorca, D., Giacinto, G., Eckert, C., Roli, F.: Adversarial malware binaries: evading deep learning for malware detection in executables. In: 2018 26th European Signal Processing Conference (EUSIPCO), pp. 533–537. IEEE (2018)
15.
Zurück zum Zitat Kondor, R., Trivedi, S.: On the generalization of equivariance and convolution in neural networks to the action of compact groups. Preprint arXiv:1802.03690 (2018) Kondor, R., Trivedi, S.: On the generalization of equivariance and convolution in neural networks to the action of compact groups. Preprint arXiv:​1802.​03690 (2018)
16.
Zurück zum Zitat Kwon, D., Kim, H., Kim, J., Suh, S.C., Kim, I., Kim, K.J.: A survey of deep learning-based network anomaly detection. Cluster Comput. 1–13 (2017) Kwon, D., Kim, H., Kim, J., Suh, S.C., Kim, I., Kim, K.J.: A survey of deep learning-based network anomaly detection. Cluster Comput. 1–13 (2017)
17.
Zurück zum Zitat Lashermes, R., Reymond, G., Dutertre, J.M., Fournier, J., Robisson, B., Tria, A.: A DFA on AES Based on the Entropy of Error Distributions. In: 2012 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 34–43. IEEE (2012) Lashermes, R., Reymond, G., Dutertre, J.M., Fournier, J., Robisson, B., Tria, A.: A DFA on AES Based on the Entropy of Error Distributions. In: 2012 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 34–43. IEEE (2012)
18.
Zurück zum Zitat Li, W., Liao, L., Gu, D., Li, C., Ge, C., Guo, Z., Liu, Y., Liu, Z.: Ciphertext-only fault analysis on the LED lightweight cryptosystem in the Internet of Things. IEEE Trans. Depend. Secure Comput. (2018) Li, W., Liao, L., Gu, D., Li, C., Ge, C., Guo, Z., Liu, Y., Liu, Z.: Ciphertext-only fault analysis on the LED lightweight cryptosystem in the Internet of Things. IEEE Trans. Depend. Secure Comput. (2018)
19.
Zurück zum Zitat Li, W., Zhang, W., Gu, D., Cao, Y., Tao, Z., Zhou, Z., Liu, Y., Liu, Z.: Impossible differential fault analysis on the LED lightweight cryptosystem in the vehicular ad-hoc networks. IEEE Trans. Depend. Secure Comput. 13(1), 84–92 (2016)CrossRef Li, W., Zhang, W., Gu, D., Cao, Y., Tao, Z., Zhou, Z., Liu, Y., Liu, Z.: Impossible differential fault analysis on the LED lightweight cryptosystem in the vehicular ad-hoc networks. IEEE Trans. Depend. Secure Comput. 13(1), 84–92 (2016)CrossRef
20.
Zurück zum Zitat Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault sensitivity analysis. In: International Workshop on Cryptographic Hardware and Embedded Systems, pp. 320–334. Springer (2010) Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault sensitivity analysis. In: International Workshop on Cryptographic Hardware and Embedded Systems, pp. 320–334. Springer (2010)
21.
Zurück zum Zitat Liu, Y., Cui, X., Cao, J., Zhang, X.: A hybrid fault model for differential fault attack on AES. In: 2017 IEEE 12th International Conference on ASIC (ASICON), pp. 784–787. IEEE (2017) Liu, Y., Cui, X., Cao, J., Zhang, X.: A hybrid fault model for differential fault attack on AES. In: 2017 IEEE 12th International Conference on ASIC (ASICON), pp. 784–787. IEEE (2017)
22.
Zurück zum Zitat Ordas, S., Guillaume-Sage, L., Maurine, P.: Electromagnetic fault injection: the curse of flip-flops. J. Cryptogr. Eng. 7(3), 183–197 (2017)CrossRef Ordas, S., Guillaume-Sage, L., Maurine, P.: Electromagnetic fault injection: the curse of flip-flops. J. Cryptogr. Eng. 7(3), 183–197 (2017)CrossRef
23.
Zurück zum Zitat Patranabis, S., Chakraborty, A., Nguyen, P.H., Mukhopadhyay, D.: A biased fault attack on the time redundancy countermeasure for AES. In: International workshop on constructive side-channel analysis and secure design, pp. 189–203. Springer (2015) Patranabis, S., Chakraborty, A., Nguyen, P.H., Mukhopadhyay, D.: A biased fault attack on the time redundancy countermeasure for AES. In: International workshop on constructive side-channel analysis and secure design, pp. 189–203. Springer (2015)
24.
Zurück zum Zitat Piret, G., Quisquater, J.J.: A differential fault attack technique against spn structures, with application to the aes and khazad. In: International Workshop on Cryptographic Hardware and Embedded Systems, pp. 77–88. Springer (2003) Piret, G., Quisquater, J.J.: A differential fault attack technique against spn structures, with application to the aes and khazad. In: International Workshop on Cryptographic Hardware and Embedded Systems, pp. 77–88. Springer (2003)
25.
Zurück zum Zitat Ramezanpour, K., Ampadu, P., Diehl, W.: Fault intensity map analysis with neural network key distinguisher. In: Proceedings of the 3rd ACM Workshop on Attacks and Solutions in Hardware Security Workshop, pp. 33–42 (2019) Ramezanpour, K., Ampadu, P., Diehl, W.: Fault intensity map analysis with neural network key distinguisher. In: Proceedings of the 3rd ACM Workshop on Attacks and Solutions in Hardware Security Workshop, pp. 33–42 (2019)
26.
Zurück zum Zitat Ramezanpour, K., Ampadu, P., Diehl, W.: FIMA: Fault intensity map analysis. In: Constructive Side-Channel Analysis and Secure Design, pp. 63–79. Springer (2019) Ramezanpour, K., Ampadu, P., Diehl, W.: FIMA: Fault intensity map analysis. In: Constructive Side-Channel Analysis and Secure Design, pp. 63–79. Springer (2019)
27.
Zurück zum Zitat Ramezanpour, K., Ampadu, P., Diehl, W.: RS-Mask: Random space masking as an integrated countermeasure against power and fault analysis. Preprint arXiv:1911.11278 (2019) Ramezanpour, K., Ampadu, P., Diehl, W.: RS-Mask: Random space masking as an integrated countermeasure against power and fault analysis. Preprint arXiv:​1911.​11278 (2019)
28.
Zurück zum Zitat Ramezanpour, K., Ampadu, P., Diehl, W.: SCAUL: Power side-channel analysis with unsupervised learning. Preprint arXiv:2001.05951 (2020) Ramezanpour, K., Ampadu, P., Diehl, W.: SCAUL: Power side-channel analysis with unsupervised learning. Preprint arXiv:​2001.​05951 (2020)
29.
Zurück zum Zitat Reshma, K., Priyatharishini, M., Devi, M.N.: Hardware trojan detection using deep learning technique. In: Soft Computing and Signal Processing, pp. 671–680. Springer (2019) Reshma, K., Priyatharishini, M., Devi, M.N.: Hardware trojan detection using deep learning technique. In: Soft Computing and Signal Processing, pp. 671–680. Springer (2019)
30.
Zurück zum Zitat Schellenberg, F., Finkeldey, M., Gerhardt, N., Hofmann, M., Moradi, A., Paar, C.: Large laser spots and fault sensitivity analysis. In: 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 203–208. IEEE (2016) Schellenberg, F., Finkeldey, M., Gerhardt, N., Hofmann, M., Moradi, A., Paar, C.: Large laser spots and fault sensitivity analysis. In: 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 203–208. IEEE (2016)
31.
Zurück zum Zitat Schneider, T., Moradi, A., Güneysu, T.: ParTI–towards combined hardware countermeasures against side-channel and fault-injection attacks. In: Annual International Cryptology Conference, pp. 302–332. Springer (2016) Schneider, T., Moradi, A., Güneysu, T.: ParTI–towards combined hardware countermeasures against side-channel and fault-injection attacks. In: Annual International Cryptology Conference, pp. 302–332. Springer (2016)
32.
Zurück zum Zitat Singh, A., Kar, M., Chawla, N., Mukhopadhyay, S.: Mitigating power supply glitch based fault attacks with fast all-digital clock modulation circuit. In: 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 19–24. IEEE (2019) Singh, A., Kar, M., Chawla, N., Mukhopadhyay, S.: Mitigating power supply glitch based fault attacks with fast all-digital clock modulation circuit. In: 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 19–24. IEEE (2019)
33.
Zurück zum Zitat Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetMATH Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetMATH
34.
Zurück zum Zitat Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015) Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
35.
Zurück zum Zitat Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced encryption standard using a single fault. In: IFIP International Workshop on Information Security Theory and Practices, pp. 224–233. Springer (2011) Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced encryption standard using a single fault. In: IFIP International Workshop on Information Security Theory and Practices, pp. 224–233. Springer (2011)
36.
Zurück zum Zitat Van Erven, T., Harremos, P.: Rényi divergence and Kullback-Leibler divergence. IEEE Trans. Inf. Theory 60(7), 3797–3820 (2014)CrossRef Van Erven, T., Harremos, P.: Rényi divergence and Kullback-Leibler divergence. IEEE Trans. Inf. Theory 60(7), 3797–3820 (2014)CrossRef
37.
Zurück zum Zitat Yuce, B., Ghalaty, N.F., Santapuri, H., Deshpande, C., Patrick, C., Schaumont, P.: Software fault resistance is futile: effective single-glitch attacks. In: 2016 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 47–58. IEEE (2016) Yuce, B., Ghalaty, N.F., Santapuri, H., Deshpande, C., Patrick, C., Schaumont, P.: Software fault resistance is futile: effective single-glitch attacks. In: 2016 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 47–58. IEEE (2016)
Metadaten
Titel
Fault intensity map analysis with neural network key distinguisher
verfasst von
Keyvan Ramezanpour
Paul Ampadu
William Diehl
Publikationsdatum
24.11.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Cryptographic Engineering / Ausgabe 3/2021
Print ISSN: 2190-8508
Elektronische ISSN: 2190-8516
DOI
https://doi.org/10.1007/s13389-020-00249-0

Weitere Artikel der Ausgabe 3/2021

Journal of Cryptographic Engineering 3/2021 Zur Ausgabe