Skip to main content

2021 | OriginalPaper | Buchkapitel

9. Fault-Tolerant Control of Discrete-Time Descriptor Systems Using Virtual Actuator and Virtual Sensor

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to the increasing complexity of modern control systems, the possibility of actuator and sensor faults has increased dramatically. These faults may degrade the performance, leading to unsatisfactory behavior, or in the worst cases to instability, thus bearing catastrophic consequences for the system itself and for the safety of living beings around them. Motivated by the increasing need for safety and reliability, FTC techniques have attracted a lot of interest in the control community, since they allow to maintain the system performance close to the desired one while preserving stability in spite of the faults [1, 2].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Blanke M, Kinnaert M, Lunze J, Staroswiecki M (2016) Diagnosis and fault-tolerant control. Springer, Berlin Heidelberg Blanke M, Kinnaert M, Lunze J, Staroswiecki M (2016) Diagnosis and fault-tolerant control. Springer, Berlin Heidelberg
2.
Zurück zum Zitat Rotondo D (2018) Advances in gain-scheduling and fault tolerant control techniques. Springer Rotondo D (2018) Advances in gain-scheduling and fault tolerant control techniques. Springer
3.
Zurück zum Zitat Zhang Y, Jiang J (2008) Bibliographical review on reconfigurable fault-tolerant control systems. Annu Rev Control 32(2):229–252CrossRef Zhang Y, Jiang J (2008) Bibliographical review on reconfigurable fault-tolerant control systems. Annu Rev Control 32(2):229–252CrossRef
4.
Zurück zum Zitat Guezmil A, Berriri H, Pusca R, Sakly A, Romary R, Mimouni M (2019) Experimental investigation of passive fault tolerant control for induction machine using sliding mode approach. Asian J Control 21(1):520–532 Guezmil A, Berriri H, Pusca R, Sakly A, Romary R, Mimouni M (2019) Experimental investigation of passive fault tolerant control for induction machine using sliding mode approach. Asian J Control 21(1):520–532
5.
Zurück zum Zitat Nasiri A, Nguang S, Swain A, Almakhles D (2019) Passive actuator fault tolerant control for a class of MIMO nonlinear systems with uncertainties. Int J Control 92(3):693–704MathSciNetCrossRef Nasiri A, Nguang S, Swain A, Almakhles D (2019) Passive actuator fault tolerant control for a class of MIMO nonlinear systems with uncertainties. Int J Control 92(3):693–704MathSciNetCrossRef
6.
7.
Zurück zum Zitat Rabaoui B, Rodrigues M, Hamdi H, BenHadj Braiek N (2018) A model reference tracking based on an active fault tolerant control for LPV systems. Int J Adapt Control Signal Process 32(6):839–857 Rabaoui B, Rodrigues M, Hamdi H, BenHadj Braiek N (2018) A model reference tracking based on an active fault tolerant control for LPV systems. Int J Adapt Control Signal Process 32(6):839–857
8.
Zurück zum Zitat Shen Q, Yue C, Goh C, Wang D (2018) Active fault-tolerant control system design for spacecraft attitude maneuvers with actuator saturation and faults. IEEE Trans Ind Electron 66(5):3763–3772CrossRef Shen Q, Yue C, Goh C, Wang D (2018) Active fault-tolerant control system design for spacecraft attitude maneuvers with actuator saturation and faults. IEEE Trans Ind Electron 66(5):3763–3772CrossRef
9.
Zurück zum Zitat Xu F, Olaru S, Puig V, Ocampo-Martinez C, Niculescu S (2017) Sensor-fault tolerance using robust MPC with set-based state estimation and active fault isolation. Int J Robust Nonlinear Control 27(8):1260–1283MathSciNetCrossRef Xu F, Olaru S, Puig V, Ocampo-Martinez C, Niculescu S (2017) Sensor-fault tolerance using robust MPC with set-based state estimation and active fault isolation. Int J Robust Nonlinear Control 27(8):1260–1283MathSciNetCrossRef
10.
Zurück zum Zitat Duan G (2010) Analysis and design of descriptor linear systems. Springer, New York, USA Duan G (2010) Analysis and design of descriptor linear systems. Springer, New York, USA
11.
Zurück zum Zitat Xu S, Lam J (2006) Robust control and filtering of singular systems. Springer Xu S, Lam J (2006) Robust control and filtering of singular systems. Springer
12.
Zurück zum Zitat Darouach M (2014) Observers and observer-based control for descriptor systems revisited. IEEE Trans Autom Control 59(5):1367–1373MathSciNetCrossRef Darouach M (2014) Observers and observer-based control for descriptor systems revisited. IEEE Trans Autom Control 59(5):1367–1373MathSciNetCrossRef
13.
Zurück zum Zitat Zhang B, Xu S, Zou Y (2008) Improved stability criterion and its applications in delayed controller design for discrete-time systems. Automatica 44(11):2963–2967MathSciNetCrossRef Zhang B, Xu S, Zou Y (2008) Improved stability criterion and its applications in delayed controller design for discrete-time systems. Automatica 44(11):2963–2967MathSciNetCrossRef
14.
Zurück zum Zitat Hsiung K-L, Lee L (1999) Lyapunov inequality and bounded real lemma for discrete-time descriptor systems. IET Control Theory Appl 146(4):327–331CrossRef Hsiung K-L, Lee L (1999) Lyapunov inequality and bounded real lemma for discrete-time descriptor systems. IET Control Theory Appl 146(4):327–331CrossRef
15.
Zurück zum Zitat Xu S, Lam J (2004) Robust stability and stabilization of discrete singular systems: an equivalent characterization. IEEE Trans Autom Control 49(4):568–574MathSciNetCrossRef Xu S, Lam J (2004) Robust stability and stabilization of discrete singular systems: an equivalent characterization. IEEE Trans Autom Control 49(4):568–574MathSciNetCrossRef
16.
Zurück zum Zitat Wang Y, Rotondo D, Puig V, Cembrano G, Zhao Y (2019) Fault tolerant control of discrete-time descriptor systems using virtual actuators. In: International conference on control and fault-tolerant systems (Systol), Casablanca, Morocco, pp 183–188 Wang Y, Rotondo D, Puig V, Cembrano G, Zhao Y (2019) Fault tolerant control of discrete-time descriptor systems using virtual actuators. In: International conference on control and fault-tolerant systems (Systol), Casablanca, Morocco, pp 183–188
17.
Zurück zum Zitat Rotondo D, Nejjari F, Puig V (2014) A virtual actuator and sensor approach for fault tolerant control of LPV systems. J Process Control 24(3):203–222CrossRef Rotondo D, Nejjari F, Puig V (2014) A virtual actuator and sensor approach for fault tolerant control of LPV systems. J Process Control 24(3):203–222CrossRef
18.
Zurück zum Zitat Duan G, Yu H (2013) LMIs in control systems: analysis, design and applications. CRC Press Duan G, Yu H (2013) LMIs in control systems: analysis, design and applications. CRC Press
Metadaten
Titel
Fault-Tolerant Control of Discrete-Time Descriptor Systems Using Virtual Actuator and Virtual Sensor
verfasst von
Ye Wang
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-52440-1_9

Neuer Inhalt