Skip to main content
Erschienen in: Wireless Personal Communications 2/2020

08.05.2020

Fault-Tolerant UAV Data Acquisition Schemes

verfasst von: Temesgen Seyoum Alemayehu, Jai-Hoon Kim, Wonsik Yoon

Erschienen in: Wireless Personal Communications | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Through the use of UAV, the functional lifetime of WSN can be elongated in exchange for higher data delivery latency as the UAV replaces the multi-hop communication among nodes during data acquisition. Due to the NP-hardness of the TSP whose computational complexity increases exponentially as an increment of number of nodes, heuristic algorithms, such as nearest neighbor heuristic TSP algorithm (NN), have been developed for reducing this data delivery latency in shortest possible time. In our previous research work we have published the directional NN algorithm directed to the next nearest node (DDNN) (Alemayehu and Kim in Wirel Pers Commun 95:3271–3285, 2017) which modifies the existing NN algorithm to gain a reduction in this data delivery latency. However, the DDNN algorithm does not consider the reliability of the system in case of node or link failures. To collect the sensing data rapidly and reliably, the DDNN algorithm should be able to react to node or link failures and manage the data transmissions effectively in the network. In this study, we propose an extension of the DDNN scheme, fault tolerable DDNN scheme for data gathering to gain a reduction in the data acquisition time with fault-tolerant capability. The performance analysis has demonstrated that our proposed algorithm tolerates fault in case of malfunctions of sensors due to node/link failures and improves the detection rate of the DDNN scheme up to 34.93% at the cost of a little bit distance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lin, C., Xiong, N., Park, J. H., & Kim, T. (2009). Dynamic power management in new architecture of wireless sensor networks. International Journal of Communication Systems, 22, 671–693.CrossRef Lin, C., Xiong, N., Park, J. H., & Kim, T. (2009). Dynamic power management in new architecture of wireless sensor networks. International Journal of Communication Systems, 22, 671–693.CrossRef
2.
Zurück zum Zitat Wu, X., Chen, G., & Das, S. K. (2008). Avoiding energy holes in wireless sensor networks with non-uniform node distribution. IEEE Transactions on Parallel and Distributed Systems, 19, 710–720.CrossRef Wu, X., Chen, G., & Das, S. K. (2008). Avoiding energy holes in wireless sensor networks with non-uniform node distribution. IEEE Transactions on Parallel and Distributed Systems, 19, 710–720.CrossRef
3.
Zurück zum Zitat Lai, C., Hwang, D. D., Kim, S. P., & Verbauwhede, I. (2004). Reducing radio energy consumption of key management protocols for wireless sensor networks. In Proceedings of the ACM/IEEE International symposium on low power electronics and design (ISLPED) (pp. 351–356). Lai, C., Hwang, D. D., Kim, S. P., & Verbauwhede, I. (2004). Reducing radio energy consumption of key management protocols for wireless sensor networks. In Proceedings of the ACM/IEEE International symposium on low power electronics and design (ISLPED) (pp. 351–356).
4.
Zurück zum Zitat Cobano, J. A., Martínez-de Dios, J. R., Conde, R., Sánchez-Matamoros, J. M., & Ollero, A. (2010). Data retrieving from heterogeneous wireless sensor network nodes using UAVs. Journal of Intelligent and Robotic Systems, 60, 133–151.CrossRef Cobano, J. A., Martínez-de Dios, J. R., Conde, R., Sánchez-Matamoros, J. M., & Ollero, A. (2010). Data retrieving from heterogeneous wireless sensor network nodes using UAVs. Journal of Intelligent and Robotic Systems, 60, 133–151.CrossRef
5.
Zurück zum Zitat de Freitas, E. P., Heimfarth, T., et al. (2010). UAV relay network to support WSN connectivity. In Proceedings of IEEE international congress on ultramodern telecommunications and control systems (ICUMT’10) (pp. 309–314). de Freitas, E. P., Heimfarth, T., et al. (2010). UAV relay network to support WSN connectivity. In Proceedings of IEEE international congress on ultramodern telecommunications and control systems (ICUMT’10) (pp. 309–314).
6.
Zurück zum Zitat Sugihara, R., & Gupta, R. K. (2009). Optimizing energy-latency trade-off in sensor networks with controlled mobility. In IEEE INFOCOM (pp. 2566–2570). Sugihara, R., & Gupta, R. K. (2009). Optimizing energy-latency trade-off in sensor networks with controlled mobility. In IEEE INFOCOM (pp. 2566–2570).
7.
Zurück zum Zitat Ho, D. T., Grøtli, E. I., Shimamoto, S., & Johansen, T. A. (2012). Optimal relay path selection and cooperative communication protocol for a swarm of UAVs. In Proceedings of the 3rd international workshop on wireless networking & control for unmanned autonomous vehicles: Architectures, protocols and applications (pp. 1585–1590). Ho, D. T., Grøtli, E. I., Shimamoto, S., & Johansen, T. A. (2012). Optimal relay path selection and cooperative communication protocol for a swarm of UAVs. In Proceedings of the 3rd international workshop on wireless networking & control for unmanned autonomous vehicles: Architectures, protocols and applications (pp. 1585–1590).
8.
Zurück zum Zitat Sujit, P. B., Lucani, D. E., & Sousa, J. B. (2012). Bridging cooperative sensing and route planning of autonomous vehicles. IEEE Journal on Selected Areas in Communications, 30, 912–922.CrossRef Sujit, P. B., Lucani, D. E., & Sousa, J. B. (2012). Bridging cooperative sensing and route planning of autonomous vehicles. IEEE Journal on Selected Areas in Communications, 30, 912–922.CrossRef
9.
Zurück zum Zitat Flushing, E. F., Gambardella, L., & Di Caro, G. (2012). Search and rescue using mixed swarms of heterogeneous agents: Modeling, simulation, and planning. IDSIA/USI-SUPSI, Technical Report. Flushing, E. F., Gambardella, L., & Di Caro, G. (2012). Search and rescue using mixed swarms of heterogeneous agents: Modeling, simulation, and planning. IDSIA/USI-SUPSI, Technical Report.
10.
Zurück zum Zitat Frew, E. W., & Brown, T. X. (2008). Networking issues for small unmmaned aircraft systems. Journal of Intelligent and Robotic Systems, 54, 21–37.CrossRef Frew, E. W., & Brown, T. X. (2008). Networking issues for small unmmaned aircraft systems. Journal of Intelligent and Robotic Systems, 54, 21–37.CrossRef
11.
Zurück zum Zitat Ruz, J. J., Arevalo, O., Pajares, G., & De la Cruz, J. M. (2009). UAV trajectory planning for static and dynamic environments. InTech, 27, 581–600. Ruz, J. J., Arevalo, O., Pajares, G., & De la Cruz, J. M. (2009). UAV trajectory planning for static and dynamic environments. InTech, 27, 581–600.
12.
Zurück zum Zitat Alemayehu, T. S., & Kim, J. H. (2017). Efficient nearest neighbor heuristic TSP algorithms for reducing data acquisition latency of UAV relay WSN. Wireless Personal Communications, 95, 3271–3285.CrossRef Alemayehu, T. S., & Kim, J. H. (2017). Efficient nearest neighbor heuristic TSP algorithms for reducing data acquisition latency of UAV relay WSN. Wireless Personal Communications, 95, 3271–3285.CrossRef
13.
Zurück zum Zitat Tekdas, O., Isler, V., Lim, J. H., & Terzis, A. (2009). Using mobile robots to harvest data from sensor fields. IEEE Wireless Communications in Robotic Networks, 16, 22–28.CrossRef Tekdas, O., Isler, V., Lim, J. H., & Terzis, A. (2009). Using mobile robots to harvest data from sensor fields. IEEE Wireless Communications in Robotic Networks, 16, 22–28.CrossRef
14.
Zurück zum Zitat Yuan, B., Orlowska, M., & Sadiq, S. (2007). On the optimal robot routing problem in wireless sensor networks. IEEE Transactions on Knowledge and Data Engineering, 19, 1252–1261.CrossRef Yuan, B., Orlowska, M., & Sadiq, S. (2007). On the optimal robot routing problem in wireless sensor networks. IEEE Transactions on Knowledge and Data Engineering, 19, 1252–1261.CrossRef
15.
Zurück zum Zitat Papadimitriou, C. H. (1978). Euclidean traveling salesman problem is NP complete. In Theoretical computer science (pp. 237–244). Papadimitriou, C. H. (1978). Euclidean traveling salesman problem is NP complete. In Theoretical computer science (pp. 237–244).
16.
Zurück zum Zitat Lawler, E. L., Lenstra, J. K., Kan, A. H. G., & Shmoys, D. B. (1985). The traveling salesman problem: A guided tour of combinatorial optimization. New York: Wiley.MATH Lawler, E. L., Lenstra, J. K., Kan, A. H. G., & Shmoys, D. B. (1985). The traveling salesman problem: A guided tour of combinatorial optimization. New York: Wiley.MATH
17.
Zurück zum Zitat Wang, J., Cao, Y., Li, B., Kim, H.-J., & Lee, S. (2017). Particle swarm optimization based clustering algorithm with mobile sink for WSNs. Future Generation Computer Systems, 76, 452–457.CrossRef Wang, J., Cao, Y., Li, B., Kim, H.-J., & Lee, S. (2017). Particle swarm optimization based clustering algorithm with mobile sink for WSNs. Future Generation Computer Systems, 76, 452–457.CrossRef
18.
Zurück zum Zitat Yue, Y.-G., & He, P. (2018). A comprehensive survey on the reliability of mobile wireless sensor networks: Taxonomy, challenges, and future directions. Information Fusion, 44, 188–204.CrossRef Yue, Y.-G., & He, P. (2018). A comprehensive survey on the reliability of mobile wireless sensor networks: Taxonomy, challenges, and future directions. Information Fusion, 44, 188–204.CrossRef
19.
Zurück zum Zitat Szewczyk, R., Polastre, J., Mainwaring, A., & Culler, D. (2004). Lessons from a sensor network expedition. In Proceedings of the first European workshop on sensor networks (EWSN) (pp. 307–322). Szewczyk, R., Polastre, J., Mainwaring, A., & Culler, D. (2004). Lessons from a sensor network expedition. In Proceedings of the first European workshop on sensor networks (EWSN) (pp. 307–322).
20.
Zurück zum Zitat Liu, H., Nayak, A., & Stojmenovic, I. (2009). Fault tolerant algorithms/protocols in wireless sensor networks. In Guide to wireless sensor networks (pp. 261–291). London: Springer. Liu, H., Nayak, A., & Stojmenovic, I. (2009). Fault tolerant algorithms/protocols in wireless sensor networks. In Guide to wireless sensor networks (pp. 261–291). London: Springer.
21.
Zurück zum Zitat Thelen, J., Goense, D., & Langendoen, K. (2005). Radio wave propagation in potato fields. In First workshop on wireless network measurement (2005). Thelen, J., Goense, D., & Langendoen, K. (2005). Radio wave propagation in potato fields. In First workshop on wireless network measurement (2005).
22.
Zurück zum Zitat Afsar, M. (2015). A comprehensive fault-tolerant framework for wireless sensor networks. Security and Communication Networks, 8(17), 3247–3261.CrossRef Afsar, M. (2015). A comprehensive fault-tolerant framework for wireless sensor networks. Security and Communication Networks, 8(17), 3247–3261.CrossRef
23.
Zurück zum Zitat Salayma, M., Al-Dubai, A. Y., Romdhani, I., & Nasser, Y. (2017). Wireless body area network (WBAN): A survey on reliability, fault tolerance, and technologies coexistence. ACM Computing Surveys, 50, 1–38.CrossRef Salayma, M., Al-Dubai, A. Y., Romdhani, I., & Nasser, Y. (2017). Wireless body area network (WBAN): A survey on reliability, fault tolerance, and technologies coexistence. ACM Computing Surveys, 50, 1–38.CrossRef
24.
Zurück zum Zitat Lussier, B., Chatila, R., Ingrand, F., Killijian, M.-O., & Powell, D. (2004). On fault tolerance and robustness in autonomous systems. In 3rd IARP-IEEE/RAS-EURON joint workshop on technical challenges for dependable robots in human environments. Lussier, B., Chatila, R., Ingrand, F., Killijian, M.-O., & Powell, D. (2004). On fault tolerance and robustness in autonomous systems. In 3rd IARP-IEEE/RAS-EURON joint workshop on technical challenges for dependable robots in human environments.
25.
Zurück zum Zitat Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., & Silva, F. (2002). Directed diffusion for wireless sensor networking. ACM/IEEE Transactions on Networking, 11, 2–16.CrossRef Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., & Silva, F. (2002). Directed diffusion for wireless sensor networking. ACM/IEEE Transactions on Networking, 11, 2–16.CrossRef
26.
Zurück zum Zitat Karlof, C., Li, Y., & Polastre, J. (2003). ARRIVE: Algorithm for robust routing in volatile environments. Technical Report UCB//CSD-03-1233, University of California, Berkeley, CA. Karlof, C., Li, Y., & Polastre, J. (2003). ARRIVE: Algorithm for robust routing in volatile environments. Technical Report UCB//CSD-03-1233, University of California, Berkeley, CA.
27.
Zurück zum Zitat Costa, D. G., Vasques, F., & Portugal, P. (2017). Enhancing the availability of wireless visual sensor networks: Selecting redundant nodes in networks with occlusion. Applied Mathematical Modelling, 42(1), 223–243.MathSciNetCrossRef Costa, D. G., Vasques, F., & Portugal, P. (2017). Enhancing the availability of wireless visual sensor networks: Selecting redundant nodes in networks with occlusion. Applied Mathematical Modelling, 42(1), 223–243.MathSciNetCrossRef
28.
Zurück zum Zitat Jafarali Jassbi, S., & Moridi, E. (2019). Fault tolerance and energy efficient clustering algorithm in wireless sensor networks: FTEC. Wireless Personal Communications, 107(1), 373–391.CrossRef Jafarali Jassbi, S., & Moridi, E. (2019). Fault tolerance and energy efficient clustering algorithm in wireless sensor networks: FTEC. Wireless Personal Communications, 107(1), 373–391.CrossRef
29.
Zurück zum Zitat Tien, N. X., Kim, S., Rhee, J. M., & Park, S. Y. (2017). A novel dual separate paths (DSP) algorithm providing fault-tolerant communication for wireless sensor networks. Sensors, 17, 1699.CrossRef Tien, N. X., Kim, S., Rhee, J. M., & Park, S. Y. (2017). A novel dual separate paths (DSP) algorithm providing fault-tolerant communication for wireless sensor networks. Sensors, 17, 1699.CrossRef
30.
Zurück zum Zitat Cheraghlou, M. N., Khadem-Zadeh, A., & Haghparast, M. (2017). Increasing lifetime and fault tolerance capability in wireless sensor networks by providing a novel management framework. Wireless Personal Communications, 92, 603–622.CrossRef Cheraghlou, M. N., Khadem-Zadeh, A., & Haghparast, M. (2017). Increasing lifetime and fault tolerance capability in wireless sensor networks by providing a novel management framework. Wireless Personal Communications, 92, 603–622.CrossRef
32.
Zurück zum Zitat McGough, J., Smotherman, M., & Trivedi, K. S. (1985). The conservativeness of reliability estimates based on instantaneous coverage. IEEE Transactions on Computers, C-34(7), 602–608.CrossRef McGough, J., Smotherman, M., & Trivedi, K. S. (1985). The conservativeness of reliability estimates based on instantaneous coverage. IEEE Transactions on Computers, C-34(7), 602–608.CrossRef
Metadaten
Titel
Fault-Tolerant UAV Data Acquisition Schemes
verfasst von
Temesgen Seyoum Alemayehu
Jai-Hoon Kim
Wonsik Yoon
Publikationsdatum
08.05.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07445-5

Weitere Artikel der Ausgabe 2/2020

Wireless Personal Communications 2/2020 Zur Ausgabe

Neuer Inhalt