Skip to main content
Erschienen in: Cluster Computing 5/2019

13.01.2018

FCC: Fast congestion control scheme for wireless sensor networks using hybrid optimal routing algorithm

verfasst von: C. J. Raman, Visumathi James

Erschienen in: Cluster Computing | Sonderheft 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless sensor networks experience congestion when high-density sensor nodes move with an increased flow rate generating heavy traffic. As a result, performance of the network is severely affected leading to packet loss, reduction of network lifetime and an increase in energy consumption. Many works have focusedto reduce these problems without considering mobility. To overcome this,a fast Congestion control (FCC) technique is introduced based on routingwith ahybrid optimization algorithm. The proposed scheme consists of two processing steps.First, we propose a multi-input time on task optimization algorithm for selecting proper next hop with minimal unwanted queuing delay. Then, we propose an altered gravitational search algorithm formaking energy efficient route between source to destination. The proposed FCC scheme resists the congestion by enhancing the routing in order to select the best next node during the data forwarding. The experimental resultshows that the proposed FCC scheme effectively reduces the data loss, energy consumption, and maximizes the average hop counts, network lifetime.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jiang, W., Miao, C., Su, L., Li, Q., Hu, S., Wang, S., Gao, J., Liu, H., Abdelzaher, T., Han, J., Liu, X., Gao, Y., Kaplan, L.: Towards quality aware information integration in distributed sensing systems. IEEE Trans Parallel Distrib. Syst. 29(1), 198–211 (2017)CrossRef Jiang, W., Miao, C., Su, L., Li, Q., Hu, S., Wang, S., Gao, J., Liu, H., Abdelzaher, T., Han, J., Liu, X., Gao, Y., Kaplan, L.: Towards quality aware information integration in distributed sensing systems. IEEE Trans Parallel Distrib. Syst. 29(1), 198–211 (2017)CrossRef
2.
Zurück zum Zitat Skog, I., Karagiannis, I., Bergsten, A., Harden, J., Gustafsson, L., Handel, P.: A smart sensor node for the internet-of-elevators–non-invasive condition and fault monitoring. IEEE Sens. J. 17, 5198–5208 (2017)CrossRef Skog, I., Karagiannis, I., Bergsten, A., Harden, J., Gustafsson, L., Handel, P.: A smart sensor node for the internet-of-elevators–non-invasive condition and fault monitoring. IEEE Sens. J. 17, 5198–5208 (2017)CrossRef
3.
Zurück zum Zitat Wang, C., Lin, H., Jiang, H.: CANS: towards congestion-adaptive and small stretch emergency navigation with wireless sensor networks. IEEE Trans. Mob. Comput. 15(5), 1077–1089 (2016)CrossRef Wang, C., Lin, H., Jiang, H.: CANS: towards congestion-adaptive and small stretch emergency navigation with wireless sensor networks. IEEE Trans. Mob. Comput. 15(5), 1077–1089 (2016)CrossRef
4.
Zurück zum Zitat Wang, G., Xin, J., Chen, L., Liu, Y.: Energy-efficient reverse skyline query processing over wireless sensor networks. IEEE Trans. Knowl. Data Eng. 24(7), 1259–1275 (2012)CrossRef Wang, G., Xin, J., Chen, L., Liu, Y.: Energy-efficient reverse skyline query processing over wireless sensor networks. IEEE Trans. Knowl. Data Eng. 24(7), 1259–1275 (2012)CrossRef
5.
Zurück zum Zitat Kong, L., Xia, M., Liu, X., Chen, G., Gu, Y., Wu, M., Liu, X.: Data loss and reconstruction in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 25(11), 2818–2828 (2014)CrossRef Kong, L., Xia, M., Liu, X., Chen, G., Gu, Y., Wu, M., Liu, X.: Data loss and reconstruction in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 25(11), 2818–2828 (2014)CrossRef
6.
Zurück zum Zitat Li, X., Sun, S.: H\(_{\infty }\) filtering for multiple channel systems with varying delays, consecutive packet losses and randomly occurred nonlinearities. Signal Process. 105, 109–121 (2014)CrossRef Li, X., Sun, S.: H\(_{\infty }\) filtering for multiple channel systems with varying delays, consecutive packet losses and randomly occurred nonlinearities. Signal Process. 105, 109–121 (2014)CrossRef
7.
Zurück zum Zitat Liu, K., Fridman, E., Johansson, K., Xia, Y.: Quantized control under round-robin communication protocol. IEEE Trans. Ind. Electron. 63(7), 4461–4471 (2016)CrossRef Liu, K., Fridman, E., Johansson, K., Xia, Y.: Quantized control under round-robin communication protocol. IEEE Trans. Ind. Electron. 63(7), 4461–4471 (2016)CrossRef
8.
Zurück zum Zitat Mirzavand, R., Honari, M., Mousavi, P.: Direct-conversion sensor for wireless sensing networks. IEEE Trans. Ind. Electron. 64, 9675–9682 (2017)CrossRef Mirzavand, R., Honari, M., Mousavi, P.: Direct-conversion sensor for wireless sensing networks. IEEE Trans. Ind. Electron. 64, 9675–9682 (2017)CrossRef
9.
Zurück zum Zitat Zhao, S., Wang, P., He, J.: Simulation analysis of congestion control in WSN based on AQM. In: 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC) (2011) Zhao, S., Wang, P., He, J.: Simulation analysis of congestion control in WSN based on AQM. In: 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC) (2011)
10.
Zurück zum Zitat Sunitha, G., Kumar, S., Kumar, B.: A pre-emptive multiple queue based congestion control for different traffic classes in WSN. In: International Conference on Circuits, Communication, Control and Computing (2014) Sunitha, G., Kumar, S., Kumar, B.: A pre-emptive multiple queue based congestion control for different traffic classes in WSN. In: International Conference on Circuits, Communication, Control and Computing (2014)
11.
Zurück zum Zitat Justus, J., Sekar, A.: Congestion control in wireless sensor network using hybrid epidermis and DAIPaS approach. In: 2016 International Conference on Inventive Computation Technologies (ICICT) (2016) Justus, J., Sekar, A.: Congestion control in wireless sensor network using hybrid epidermis and DAIPaS approach. In: 2016 International Conference on Inventive Computation Technologies (ICICT) (2016)
13.
Zurück zum Zitat Misra, S., Tiwari, V., Obaidat, M.: Lacas: learning automata-based congestion avoidance scheme for healthcare wireless sensor networks. IEEE J. Sel. Areas Commun. 27(4), 466–479 (2009)CrossRef Misra, S., Tiwari, V., Obaidat, M.: Lacas: learning automata-based congestion avoidance scheme for healthcare wireless sensor networks. IEEE J. Sel. Areas Commun. 27(4), 466–479 (2009)CrossRef
14.
Zurück zum Zitat Yin, X., Zhou, X., Huang, R., Fang, Y., Li, S.: A fairness-aware congestion control scheme in wireless sensor networks. IEEE Trans. Vehicular Technol. 58(9), 5225–5234 (2009)CrossRef Yin, X., Zhou, X., Huang, R., Fang, Y., Li, S.: A fairness-aware congestion control scheme in wireless sensor networks. IEEE Trans. Vehicular Technol. 58(9), 5225–5234 (2009)CrossRef
15.
Zurück zum Zitat Ren, F., He, T., Das, S., Lin, C.: Traffic-aware dynamic routing to alleviate congestion in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 22(9), 1585–1599 (2011)CrossRef Ren, F., He, T., Das, S., Lin, C.: Traffic-aware dynamic routing to alleviate congestion in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 22(9), 1585–1599 (2011)CrossRef
16.
Zurück zum Zitat Sergiou, C., Vassiliou, V., Paphitis, A.: Hierarchical Tree Alternative Path (HTAP) algorithm for congestion control in wireless sensor networks. Ad Hoc Netw. 11(1), 257–272 (2013)CrossRef Sergiou, C., Vassiliou, V., Paphitis, A.: Hierarchical Tree Alternative Path (HTAP) algorithm for congestion control in wireless sensor networks. Ad Hoc Netw. 11(1), 257–272 (2013)CrossRef
17.
Zurück zum Zitat Uthra, R., Kasmir Raja, S., Jeyasekar, A., Lattanze, A.: A probabilistic approach for predictive congestion control in wireless sensor networks. J. Zhejiang Univ. Sci. C. 15(3), 187–199 (2014)CrossRef Uthra, R., Kasmir Raja, S., Jeyasekar, A., Lattanze, A.: A probabilistic approach for predictive congestion control in wireless sensor networks. J. Zhejiang Univ. Sci. C. 15(3), 187–199 (2014)CrossRef
18.
Zurück zum Zitat Gholipour, M., Haghighat, A., Meybodi, M.: Hop-by-hop traffic-aware routing to congestion control in wireless sensor networks. EURASIP J. Wirel. Commun. Netw. 1, 15 (2015)CrossRef Gholipour, M., Haghighat, A., Meybodi, M.: Hop-by-hop traffic-aware routing to congestion control in wireless sensor networks. EURASIP J. Wirel. Commun. Netw. 1, 15 (2015)CrossRef
19.
Zurück zum Zitat Gholipour, M., Haghighat, A., Meybodi, M.: Hop-by-Hop Congestion Avoidance in wireless sensor networks based on genetic support vector machine. Neurocomputing 223, 63–76 (2017)CrossRef Gholipour, M., Haghighat, A., Meybodi, M.: Hop-by-Hop Congestion Avoidance in wireless sensor networks based on genetic support vector machine. Neurocomputing 223, 63–76 (2017)CrossRef
20.
Zurück zum Zitat Kafi, M., Ben-Othman, J., Ouadjaout, A., Bagaa, M., Badache, N.: REFIACC: Reliable, efficient, fair and interference-aware congestion control protocol for wireless sensor networks. Comput. Commun. 101, 1–11 (2017)CrossRef Kafi, M., Ben-Othman, J., Ouadjaout, A., Bagaa, M., Badache, N.: REFIACC: Reliable, efficient, fair and interference-aware congestion control protocol for wireless sensor networks. Comput. Commun. 101, 1–11 (2017)CrossRef
21.
Zurück zum Zitat Chen, W., Niu, Y., Zou, Y.: Congestion control and energy-balanced scheme based on the hierarchy for WSNs. IET Wirel. Sensor Systems 7(1), 1–8 (2017)CrossRef Chen, W., Niu, Y., Zou, Y.: Congestion control and energy-balanced scheme based on the hierarchy for WSNs. IET Wirel. Sensor Systems 7(1), 1–8 (2017)CrossRef
22.
Zurück zum Zitat Nikokheslat, H., Ghaffari, A.: Protocol for controlling congestion in wireless sensor networks. Wirel. Pers. Commun. 95(3), 3233–3251 (2017)CrossRef Nikokheslat, H., Ghaffari, A.: Protocol for controlling congestion in wireless sensor networks. Wirel. Pers. Commun. 95(3), 3233–3251 (2017)CrossRef
23.
Zurück zum Zitat Chen, W., Guan, Q., Jiang, S., Guan, Q., Huang, T.: Joint QoS provisioning and congestion control for multi-hop wireless networks. EURASIP J. Wirel. Commun. Netw. 1, 19 (2016)CrossRef Chen, W., Guan, Q., Jiang, S., Guan, Q., Huang, T.: Joint QoS provisioning and congestion control for multi-hop wireless networks. EURASIP J. Wirel. Commun. Netw. 1, 19 (2016)CrossRef
24.
Zurück zum Zitat Ding, W., Tang, L., Ji, S.: Optimizing routing based on congestion control for wireless sensor networks. Wirel. Netw. 22(3), 915–925 (2015)CrossRef Ding, W., Tang, L., Ji, S.: Optimizing routing based on congestion control for wireless sensor networks. Wirel. Netw. 22(3), 915–925 (2015)CrossRef
25.
Zurück zum Zitat Raman, C.J., James, V.: Fuzzy based congestion control for backpressure routing algorithm in wireless sensor networks. Res. J. Appl. Sci. Eng. Technol. 11(11), 1179–1189 (2015)CrossRef Raman, C.J., James, V.: Fuzzy based congestion control for backpressure routing algorithm in wireless sensor networks. Res. J. Appl. Sci. Eng. Technol. 11(11), 1179–1189 (2015)CrossRef
26.
Zurück zum Zitat Chen, K., Muhlethaler, P.: A scheduling algorithm for tasks described by time value function. Real-Time Syst. 10(3), 293–312 (1996)CrossRef Chen, K., Muhlethaler, P.: A scheduling algorithm for tasks described by time value function. Real-Time Syst. 10(3), 293–312 (1996)CrossRef
Metadaten
Titel
FCC: Fast congestion control scheme for wireless sensor networks using hybrid optimal routing algorithm
verfasst von
C. J. Raman
Visumathi James
Publikationsdatum
13.01.2018
Verlag
Springer US
Erschienen in
Cluster Computing / Ausgabe Sonderheft 5/2019
Print ISSN: 1386-7857
Elektronische ISSN: 1573-7543
DOI
https://doi.org/10.1007/s10586-018-1744-8

Weitere Artikel der Sonderheft 5/2019

Cluster Computing 5/2019 Zur Ausgabe