Skip to main content

2023 | OriginalPaper | Buchkapitel

FCTRAC and BioH2Modul – A Way to Zero Emission Mobility in Agriculture

verfasst von : Veronica Gubin, Christian Varlese, Florian Benedikt, Johannes Konrad, Stefan Müller, Daniel Cenk Rosenfeld, Peter Hofmann

Erschienen in: Antriebe und Energiesysteme von morgen 2022

Verlag: Springer Fachmedien Wiesbaden

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

On the way to Zero Emission Mobility, no feasible solution for tractors is so far available, as battery electric vehicles are not able to fulfill the requirements for range, refueling time, and weight. Therefore, in the frame of the funded project “FCTRAC”, a fuel cell tractor is developed from an existing diesel vehicle to meet these specific requirements of the powertrain. Due to the limited space in the vehicle and the challenges arising from the thermal management of the fuel cell powertrain, innovative solutions have been developed to achieve the full-operability of the vehicle.
Moreover, no hydrogen fueling infrastructure exists in the operational areas of most of tractor use-cases. Hence, another goal of the project is the development of an input-flexible plant for decentralized production of green hydrogen. Product gas from gasification of wood chips, biogas out of biogas plants, as well as digester gas out of sewage treatment plants are considered as input gases. The proposed solution, the so-called “BioH2Modul”, can be coupled with these sources and deliver hydrogen to the storage system. As combined heat and power plants using wood gasification, sewage treatment plants, biogas plants are widespread in the agricultural sector, hydrogen can be produced, in the operational areas of the tractors.
The first part of the paper will present the wide range of process units, which can be implemented in the process chain design for decentralized production of high-purity hydrogen from the different feed gases. These process units are consequently classified according to their operating conditions, thus forming the basis for the design of the process chains.
In the second part, the fuel cell powertrain will be described as well as the thermal system and simulation results. Through an innovative packaging in the vehicle, the higher cooling requirements of the fuel cell system are fulfilled even in critical conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Db – dry basis.
 
2
Left: BG from renewable raw materials; Right: BG from residues; Average values from different measurements do not necessarily result in 100 %.
 
3
n. a. – not available.
 
4
CXHY – light hydrocarbons such as ethane, ethylene, propane.
 
5
Saturated gas according to temperature and pressure in digester.
 
6
"
 
Literatur
3.
Zurück zum Zitat Adams, P., Bridgwater, T., Lea-Langton, A., Ross, A., Watson, I.: Greenhouse Gas Balances of Bioenergy Systems, 1st edn. Academic Press (2018). ISBN: 978-0-08-101036-5 Adams, P., Bridgwater, T., Lea-Langton, A., Ross, A., Watson, I.: Greenhouse Gas Balances of Bioenergy Systems, 1st edn. Academic Press (2018). ISBN: 978-0-08-101036-5
4.
Zurück zum Zitat Kaltschmitt, M., Hartmann, H., Hofbauer, H.: Energie aus Biomasse, 3rd edn. Springer, Berlin (2016). ISBN: 978-3-662-47437-2 Kaltschmitt, M., Hartmann, H., Hofbauer, H.: Energie aus Biomasse, 3rd edn. Springer, Berlin (2016). ISBN: 978-3-662-47437-2
10.
Zurück zum Zitat Liu, K., Song, C., Subramani, V.: Hydrogen and Syngas Production and Purification Technologies. Wiley (2010). ISBN: 9780471719755 Liu, K., Song, C., Subramani, V.: Hydrogen and Syngas Production and Purification Technologies. Wiley (2010). ISBN: 9780471719755
13.
Zurück zum Zitat Aasadnia, M., Mehrpooya, M., Ghorbani, B.: A novel integrated structure for hydrogen purification using the cryogenic method. J. Clean. Prod. 278 (2021) Aasadnia, M., Mehrpooya, M., Ghorbani, B.: A novel integrated structure for hydrogen purification using the cryogenic method. J. Clean. Prod. 278 (2021)
17.
Zurück zum Zitat Milne, T.A., Evans, R., Abatzoglou, N.: Biomass gasifier “tars”: their nature, formation, and conversion. Technical Report, National Renewable Energy Laboratory. Colorado (1998). https://doi.org/10.2172/3726 Milne, T.A., Evans, R., Abatzoglou, N.: Biomass gasifier “tars”: their nature, formation, and conversion. Technical Report, National Renewable Energy Laboratory. Colorado (1998). https://​doi.​org/​10.​2172/​3726
18.
Zurück zum Zitat Tonpakdee, P., Hongrapipat, J., Siriwongrungson, V., Rauch, R., Pang, S., Thaveesri, J., Messner, M., Kuba, M., Hofbauer, H.: Influence of solvent temperature and type on naphthalene solubility for tar removal in a dual fluidized bed biomass gasification process. Curr. Appl. Sci. Technol. 21, 751–760 (2021). https://doi.org/DOI.14456/cast.2021.60 Tonpakdee, P., Hongrapipat, J., Siriwongrungson, V., Rauch, R., Pang, S., Thaveesri, J., Messner, M., Kuba, M., Hofbauer, H.: Influence of solvent temperature and type on naphthalene solubility for tar removal in a dual fluidized bed biomass gasification process. Curr. Appl. Sci. Technol. 21, 751–760 (2021). https://​doi.​org/​DOI.​14456/​cast.​2021.​60
21.
Zurück zum Zitat Weinlaender, C., Neubauer, R., Hauth, M., Hochenauer, C.: Adsorptive hydrogen chloride and combined hydrogen chloride–hydrogen sulphide removal from biogas for solid oxide fuel cell application. Adsorpt. Sci. Technol. 36 (2018). https://doi.org/10.1177/0263617418772660 Weinlaender, C., Neubauer, R., Hauth, M., Hochenauer, C.: Adsorptive hydrogen chloride and combined hydrogen chloride–hydrogen sulphide removal from biogas for solid oxide fuel cell application. Adsorpt. Sci. Technol. 36 (2018). https://​doi.​org/​10.​1177/​0263617418772660​
22.
Zurück zum Zitat Petersson, A.: Biogas cleaning in The Biogas Handbook. Woodhead Publishing Limited (2013). ISBN: 9780857094988 Petersson, A.: Biogas cleaning in The Biogas Handbook. Woodhead Publishing Limited (2013). ISBN: 9780857094988
24.
26.
Zurück zum Zitat Kufferath, A., et al.: H2ICE powertrains for future on-road mobility. In: 42. Internationales Wiener Motorensymposium, Vienna (2021) Kufferath, A., et al.: H2ICE powertrains for future on-road mobility. In: 42. Internationales Wiener Motorensymposium, Vienna (2021)
Metadaten
Titel
FCTRAC and BioH2Modul – A Way to Zero Emission Mobility in Agriculture
verfasst von
Veronica Gubin
Christian Varlese
Florian Benedikt
Johannes Konrad
Stefan Müller
Daniel Cenk Rosenfeld
Peter Hofmann
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-658-41435-1_8

Premium Partner