Skip to main content
Erschienen in: Journal of Materials Science 15/2019

01.05.2019 | Ceramics

Fe3+-doped SnO2 inverse opal with high structural color saturation

verfasst von: Fangfang Liu, Zhanming Gao, Jin Hu, Yao Meng, Shufen Zhang, Bingtao Tang

Erschienen in: Journal of Materials Science | Ausgabe 15/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The structural color of inverse opal derived from the interaction between visible light and nanostructure is widely known for the extensive selection of materials, excellent light resistance stability, and environmental friendliness. In contrast to the opal structure, the light scattering in inverse opal is higher and results in milky appearance or even lack of color. In this work, we introduced Fe3+ into the structure of SnO2 inverse opal and successfully obtained an Fe3+-doped SnO2 inverse opal with high color saturation. The direct template method was applied, and the fcc arrangement of template spheres was well kept. Because of the charge transfer transition of Fe3+–O2−, Fe3+ absorbed most of the unwanted scattered light, thereby highlighting the band gap color. Meanwhile, the refractive index of inverse opal increased with the increase in Fe3+ content. It enabled the full spectral coverage in the visible region of the highly saturated structural color only by three particle size templates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Parker AR (2000) 515 million years of structural colour. J Opt A: Pure Appl Opt 2:R15–R28CrossRef Parker AR (2000) 515 million years of structural colour. J Opt A: Pure Appl Opt 2:R15–R28CrossRef
2.
Zurück zum Zitat Fu F, Chen Z, Zhao Z, Wang H, Shang L, Gu Z, Zhao Y (2017) Bio-inspired self-healing structural color hydrogel. Proc Natl Acad Sci USA 114:5900CrossRef Fu F, Chen Z, Zhao Z, Wang H, Shang L, Gu Z, Zhao Y (2017) Bio-inspired self-healing structural color hydrogel. Proc Natl Acad Sci USA 114:5900CrossRef
3.
Zurück zum Zitat Boyle BM, French TA, Pearson RM, McCarthy BG, Miyake GM (2017) Structural color for additive manufacturing: 3d-printed photonic crystals from block copolymers. ACS Nano 11:3052–3058CrossRef Boyle BM, French TA, Pearson RM, McCarthy BG, Miyake GM (2017) Structural color for additive manufacturing: 3d-printed photonic crystals from block copolymers. ACS Nano 11:3052–3058CrossRef
4.
Zurück zum Zitat Li Y, Calvo ME, Míguez H (2016) Integration of photonic crystals into flexible dye solar cells: a route toward bendable and adaptable optoelectronic devices displaying structural color and enhanced efficiency. Adv Optical Mater 4:464–471CrossRef Li Y, Calvo ME, Míguez H (2016) Integration of photonic crystals into flexible dye solar cells: a route toward bendable and adaptable optoelectronic devices displaying structural color and enhanced efficiency. Adv Optical Mater 4:464–471CrossRef
5.
Zurück zum Zitat Liu G, Zhou L, Zhang G, Li Y, Chai L, Fan Q, Shao J (2017) Fabrication of patterned photonic crystals with brilliant structural colors on fabric substrates using ink-jet printing technology. Mater Des 114:10–17CrossRef Liu G, Zhou L, Zhang G, Li Y, Chai L, Fan Q, Shao J (2017) Fabrication of patterned photonic crystals with brilliant structural colors on fabric substrates using ink-jet printing technology. Mater Des 114:10–17CrossRef
6.
Zurück zum Zitat Dumanli AG, Savin T (2016) Recent advances in the biomimicry of structural colours. Chem Soc Rev 45:6698–6724CrossRef Dumanli AG, Savin T (2016) Recent advances in the biomimicry of structural colours. Chem Soc Rev 45:6698–6724CrossRef
7.
Zurück zum Zitat Ge D, Lee E, Yang L, Cho Y, Li M, Gianola DS, Yang S (2015) A robust smart window: reversibly switching from high transparency to angle-independent structural color display. Adv Mater 27:2489–2495CrossRef Ge D, Lee E, Yang L, Cho Y, Li M, Gianola DS, Yang S (2015) A robust smart window: reversibly switching from high transparency to angle-independent structural color display. Adv Mater 27:2489–2495CrossRef
8.
Zurück zum Zitat Aguirre CI, Reguera E, Stein A (2010) Tunable colors in opals and inverse opal photonic crystals. Adv Funct Mater 20:2565–2578CrossRef Aguirre CI, Reguera E, Stein A (2010) Tunable colors in opals and inverse opal photonic crystals. Adv Funct Mater 20:2565–2578CrossRef
9.
Zurück zum Zitat Yi B, Shen H (2018) Structurally colored films with superhydrophobicity and wide viewing angles based on bumpy melanin-like particles. Appl Surf Sci 427:1129–1136CrossRef Yi B, Shen H (2018) Structurally colored films with superhydrophobicity and wide viewing angles based on bumpy melanin-like particles. Appl Surf Sci 427:1129–1136CrossRef
10.
Zurück zum Zitat Li F, Tang B, Wu S, Zhang S (2017) Facile synthesis of monodispersed polysulfide spheres for building structural colors with high color visibility and broad viewing angle. Small 13:1602565CrossRef Li F, Tang B, Wu S, Zhang S (2017) Facile synthesis of monodispersed polysulfide spheres for building structural colors with high color visibility and broad viewing angle. Small 13:1602565CrossRef
11.
Zurück zum Zitat Chandler CJ, Wilts BD, Brodie J, Vignolini S (2017) Structural color in marine algae. Adv Opt Mater 5:1600646CrossRef Chandler CJ, Wilts BD, Brodie J, Vignolini S (2017) Structural color in marine algae. Adv Opt Mater 5:1600646CrossRef
12.
Zurück zum Zitat Ding H, Zhu C, Tian L, Liu C, Fu G, Shang L, Gu Z (2017) Structural color patterns by electrohydrodynamic jet printed photonic crystals. ACS Appl Mater Interfaces 9:11933–11941CrossRef Ding H, Zhu C, Tian L, Liu C, Fu G, Shang L, Gu Z (2017) Structural color patterns by electrohydrodynamic jet printed photonic crystals. ACS Appl Mater Interfaces 9:11933–11941CrossRef
13.
Zurück zum Zitat Zhang W, Anaya M, Lozano G, Calvo ME, Johnston MB, Míguez H, Snaith HJ (2015) Highly efficient perovskite solar cells with tunable structural color. Nano Lett 15:1698–1702CrossRef Zhang W, Anaya M, Lozano G, Calvo ME, Johnston MB, Míguez H, Snaith HJ (2015) Highly efficient perovskite solar cells with tunable structural color. Nano Lett 15:1698–1702CrossRef
14.
Zurück zum Zitat Wang W, Fan X, Li F, Qiu J, Umair MM, Ren W, Ju B, Zhang S, Tang B (2018) Magnetochromic photonic hydrogel for an alternating magnetic field-responsive color display. Adv Opt Mater 6:1701093CrossRef Wang W, Fan X, Li F, Qiu J, Umair MM, Ren W, Ju B, Zhang S, Tang B (2018) Magnetochromic photonic hydrogel for an alternating magnetic field-responsive color display. Adv Opt Mater 6:1701093CrossRef
15.
Zurück zum Zitat Bai L, Mai VC, Lim Y, Hou S, Möhwald H, Duan H (2018) Large-scale noniridescent structural color printing enabled by infiltration-driven nonequilibrium colloidal assembly. Adv Mater 30:1705667CrossRef Bai L, Mai VC, Lim Y, Hou S, Möhwald H, Duan H (2018) Large-scale noniridescent structural color printing enabled by infiltration-driven nonequilibrium colloidal assembly. Adv Mater 30:1705667CrossRef
16.
Zurück zum Zitat Stein A, Wilson BE, Rudisill SG (2013) Design and functionality of colloidal-crystal-templated materials—chemical applications of inverse opals. Chem Soc Rev 42:2763–2803CrossRef Stein A, Wilson BE, Rudisill SG (2013) Design and functionality of colloidal-crystal-templated materials—chemical applications of inverse opals. Chem Soc Rev 42:2763–2803CrossRef
17.
Zurück zum Zitat Liu C, Ding H, Wu Z, Gao B, Fu F, Shang L, Gu Z, Zhao Y (2016) Tunable structural color surfaces with visually self-reporting wettability. Adv Funct Mater 26:7937–7942CrossRef Liu C, Ding H, Wu Z, Gao B, Fu F, Shang L, Gu Z, Zhao Y (2016) Tunable structural color surfaces with visually self-reporting wettability. Adv Funct Mater 26:7937–7942CrossRef
18.
Zurück zum Zitat Meng Y, Liu F, Umair MM, Ju B, Zhang S, Tang B (2018) Patterned and iridescent plastics with 3D inverse opal structure for anticounterfeiting of the banknotes. Adv Opt Mater 6:1701351CrossRef Meng Y, Liu F, Umair MM, Ju B, Zhang S, Tang B (2018) Patterned and iridescent plastics with 3D inverse opal structure for anticounterfeiting of the banknotes. Adv Opt Mater 6:1701351CrossRef
19.
Zurück zum Zitat Puzzo DP, Arsenault AC, Manners I, Ozin GA (2009) Electroactive inverse opal: a single material for all colors. Angew Chem Int Ed 48:943–947CrossRef Puzzo DP, Arsenault AC, Manners I, Ozin GA (2009) Electroactive inverse opal: a single material for all colors. Angew Chem Int Ed 48:943–947CrossRef
20.
Zurück zum Zitat Ozaki M, Shimoda Y, Kasano M, Yoshino K (2002) Electric field tuning of the stop band in a liquid-crystal-infiltrated polymer inverse opal. Adv Mater 14:514–518CrossRef Ozaki M, Shimoda Y, Kasano M, Yoshino K (2002) Electric field tuning of the stop band in a liquid-crystal-infiltrated polymer inverse opal. Adv Mater 14:514–518CrossRef
21.
Zurück zum Zitat Couturier J, Sütterlin M, Laschewsky A, Hettrich C, Wischerhoff E (2015) Responsive inverse opal hydrogels for the sensing of macromolecules. Angew Chem Int Ed 54:6641–6644CrossRef Couturier J, Sütterlin M, Laschewsky A, Hettrich C, Wischerhoff E (2015) Responsive inverse opal hydrogels for the sensing of macromolecules. Angew Chem Int Ed 54:6641–6644CrossRef
22.
Zurück zum Zitat Min K, Kim S, Kim S (2017) Deformable and conformal silk hydrogel inverse opal. Proc Natl Acad Sci USA 114:6185–6190CrossRef Min K, Kim S, Kim S (2017) Deformable and conformal silk hydrogel inverse opal. Proc Natl Acad Sci USA 114:6185–6190CrossRef
24.
Zurück zum Zitat Li H, Wang J, Pan Z, Cui L, Xu L, Wang R, Song Y, Jiang L (2011) Amplifying fluorescence sensing based on inverse opal photonic crystal toward trace TNT detection. J Mater Chem 21:1730–1735CrossRef Li H, Wang J, Pan Z, Cui L, Xu L, Wang R, Song Y, Jiang L (2011) Amplifying fluorescence sensing based on inverse opal photonic crystal toward trace TNT detection. J Mater Chem 21:1730–1735CrossRef
25.
Zurück zum Zitat Schaffner M, England G, Kolle M, Aizenberg J, Vogel N (2015) Combining bottom-up self-assembly with top-down microfabrication to create hierarchical inverse opals with high structural order. Small 11:4334–4340CrossRef Schaffner M, England G, Kolle M, Aizenberg J, Vogel N (2015) Combining bottom-up self-assembly with top-down microfabrication to create hierarchical inverse opals with high structural order. Small 11:4334–4340CrossRef
26.
Zurück zum Zitat O’Dwyer C (2016) Color-coded batteries-electro-photonic inverse opal materials for enhanced electrochemical energy storage and optically encoded diagnostics. Adv Mater 28:5681–5688CrossRef O’Dwyer C (2016) Color-coded batteries-electro-photonic inverse opal materials for enhanced electrochemical energy storage and optically encoded diagnostics. Adv Mater 28:5681–5688CrossRef
27.
Zurück zum Zitat Chen Z, Pan D, Li Z, Jiao Z, Wu M, Shek C, Wu CML, Lai JKL (2014) Recent advances in tin dioxide materials: some developments in thin films, nanowires, and nanorods. Chem Rev 114:7442–7486CrossRef Chen Z, Pan D, Li Z, Jiao Z, Wu M, Shek C, Wu CML, Lai JKL (2014) Recent advances in tin dioxide materials: some developments in thin films, nanowires, and nanorods. Chem Rev 114:7442–7486CrossRef
28.
Zurück zum Zitat Dimitrov V, Sakka S (1996) Electronic oxide polarizability and optical basicity of simple oxides. I. J Appl Phys 79:1736–1740CrossRef Dimitrov V, Sakka S (1996) Electronic oxide polarizability and optical basicity of simple oxides. I. J Appl Phys 79:1736–1740CrossRef
29.
Zurück zum Zitat Han MG, Shin CG, Jeon S, Shim H, Heo C, Jin H, Kim JW, Lee S (2012) Full color tunable photonic crystal from crystalline colloidal arrays with an engineered photonic stop-band. Adv Mater 24:6438–6444CrossRef Han MG, Shin CG, Jeon S, Shim H, Heo C, Jin H, Kim JW, Lee S (2012) Full color tunable photonic crystal from crystalline colloidal arrays with an engineered photonic stop-band. Adv Mater 24:6438–6444CrossRef
30.
Zurück zum Zitat Shen Z, Shi L, You B, Wu L, Zhao D (2012) Large-scale fabrication of three-dimensional ordered polymer films with strong structure colors and robust mechanical properties. J Mater Chem 22:8069–8075CrossRef Shen Z, Shi L, You B, Wu L, Zhao D (2012) Large-scale fabrication of three-dimensional ordered polymer films with strong structure colors and robust mechanical properties. J Mater Chem 22:8069–8075CrossRef
31.
Zurück zum Zitat Yi B, Shen H (2017) Facile fabrication of crack-free photonic crystals with enhanced color contrast and low angle dependence. J Mater Chem C 5:8194–8200CrossRef Yi B, Shen H (2017) Facile fabrication of crack-free photonic crystals with enhanced color contrast and low angle dependence. J Mater Chem C 5:8194–8200CrossRef
32.
Zurück zum Zitat Ge D, Yang X, Chen Z, Yang L, Wu G, Xia Y, Yang S (2017) Colloidal inks from bumpy colloidal nanoparticles for the assembly of ultrasmooth and uniform structural colors. Nanoscale 9:17357–17363CrossRef Ge D, Yang X, Chen Z, Yang L, Wu G, Xia Y, Yang S (2017) Colloidal inks from bumpy colloidal nanoparticles for the assembly of ultrasmooth and uniform structural colors. Nanoscale 9:17357–17363CrossRef
33.
Zurück zum Zitat Josephson DP, Popczun EJ, Stein A (2013) Effects of integrated carbon as a light absorber on the coloration of photonic crystal-based pigments. J Phys Chem C 117:13585–13592CrossRef Josephson DP, Popczun EJ, Stein A (2013) Effects of integrated carbon as a light absorber on the coloration of photonic crystal-based pigments. J Phys Chem C 117:13585–13592CrossRef
34.
Zurück zum Zitat Josephson DP, Miller M, Stein A (2014) Inverse opal SiO2 photonic crystals as structurally-colored pigments with additive primary colors. Z Anorg Allg Chem 640:655–662CrossRef Josephson DP, Miller M, Stein A (2014) Inverse opal SiO2 photonic crystals as structurally-colored pigments with additive primary colors. Z Anorg Allg Chem 640:655–662CrossRef
35.
Zurück zum Zitat Stein A, Li F, Denny NR (2008) Morphological control in colloidal crystal templating of inverse opals, hierarchical structures, and shaped particles. Chem Mater 20:649–666CrossRef Stein A, Li F, Denny NR (2008) Morphological control in colloidal crystal templating of inverse opals, hierarchical structures, and shaped particles. Chem Mater 20:649–666CrossRef
36.
Zurück zum Zitat Phillips KR, England GT, Sunny S, Shirman E, Shirman T, Vogel N, Aizenberg J (2016) A colloidoscope of colloid-based porous materials and their uses. Chem Soc Rev 45:281–322CrossRef Phillips KR, England GT, Sunny S, Shirman E, Shirman T, Vogel N, Aizenberg J (2016) A colloidoscope of colloid-based porous materials and their uses. Chem Soc Rev 45:281–322CrossRef
37.
Zurück zum Zitat Liu F, Shan B, Zhang S, Tang B (2018) SnO2 inverse opal composite film with low-angle-dependent structural color and enhanced mechanical strength. Langmuir 34:3918–3924CrossRef Liu F, Shan B, Zhang S, Tang B (2018) SnO2 inverse opal composite film with low-angle-dependent structural color and enhanced mechanical strength. Langmuir 34:3918–3924CrossRef
38.
Zurück zum Zitat Bonu V, Das A, Sivadasan AK, Tyagi AK, Dhara S (2015) Invoking forbidden modes in SnO2 nanoparticles using tip enhanced raman spectroscopy. J Raman Spectrosc 46:1037–1040CrossRef Bonu V, Das A, Sivadasan AK, Tyagi AK, Dhara S (2015) Invoking forbidden modes in SnO2 nanoparticles using tip enhanced raman spectroscopy. J Raman Spectrosc 46:1037–1040CrossRef
39.
Zurück zum Zitat Hays J, Punnoose A, Baldner R, Engelhard MH, Peloquin JMK (2005) Relationship between the structural and magnetic properties of Co-doped SnO2 nanoparticles. Phys Rev B 72:075203CrossRef Hays J, Punnoose A, Baldner R, Engelhard MH, Peloquin JMK (2005) Relationship between the structural and magnetic properties of Co-doped SnO2 nanoparticles. Phys Rev B 72:075203CrossRef
40.
Zurück zum Zitat Reddy MV, Yu T, Sow C, Shen ZX, Lim CT, Rao GVS, Chowdari BVR (2007) α-Fe2O3 nanoflakes as an anode material for li-ion batteries. Adv Funct Mater 17:2792–2799CrossRef Reddy MV, Yu T, Sow C, Shen ZX, Lim CT, Rao GVS, Chowdari BVR (2007) α-Fe2O3 nanoflakes as an anode material for li-ion batteries. Adv Funct Mater 17:2792–2799CrossRef
41.
Zurück zum Zitat Jiang P, Li J, Sleight AW, Subramanian MA (2011) New oxides showing an intense orange color based on Fe3+ in trigonal-bipyramidal coordination. Inorg Chem 50:5858–5860CrossRef Jiang P, Li J, Sleight AW, Subramanian MA (2011) New oxides showing an intense orange color based on Fe3+ in trigonal-bipyramidal coordination. Inorg Chem 50:5858–5860CrossRef
42.
Zurück zum Zitat James V, Rao PP, Sameera S, Divya S (2014) Multiferroic based reddish brown pigments: Bi1−xMxFeO3 (M = Y and La) for coloring applications. Ceram Int 40:2229–2235CrossRef James V, Rao PP, Sameera S, Divya S (2014) Multiferroic based reddish brown pigments: Bi1−xMxFeO3 (M = Y and La) for coloring applications. Ceram Int 40:2229–2235CrossRef
43.
Zurück zum Zitat Jovaní M, Fortuño-Morte M, Beltrán-Mir H, Cordoncillo E (2018) Environmental-friendly red-orange ceramic pigment based on Pr and Fe co-doped Y2Zr2O7. J Eur Ceram Soc 38:2210–2217CrossRef Jovaní M, Fortuño-Morte M, Beltrán-Mir H, Cordoncillo E (2018) Environmental-friendly red-orange ceramic pigment based on Pr and Fe co-doped Y2Zr2O7. J Eur Ceram Soc 38:2210–2217CrossRef
44.
Zurück zum Zitat Zhou L, Li Y, Liu G, Fan Q, Shao J (2016) Study on the correlations between the structural colors of photonic crystals and the base colors of textile fabric substrates. Dyes Pigments 133:435–444CrossRef Zhou L, Li Y, Liu G, Fan Q, Shao J (2016) Study on the correlations between the structural colors of photonic crystals and the base colors of textile fabric substrates. Dyes Pigments 133:435–444CrossRef
45.
Zurück zum Zitat Schroden RC, Al-Daous M, Blanford CF, Stein A (2002) Optical properties of inverse opal photonic crystals. Chem Mater 14:3305–3315CrossRef Schroden RC, Al-Daous M, Blanford CF, Stein A (2002) Optical properties of inverse opal photonic crystals. Chem Mater 14:3305–3315CrossRef
Metadaten
Titel
Fe3+-doped SnO2 inverse opal with high structural color saturation
verfasst von
Fangfang Liu
Zhanming Gao
Jin Hu
Yao Meng
Shufen Zhang
Bingtao Tang
Publikationsdatum
01.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 15/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03657-8

Weitere Artikel der Ausgabe 15/2019

Journal of Materials Science 15/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.