Skip to main content
Erschienen in: Journal of Materials Science 18/2021

12.03.2021 | Energy materials

Fe3+ sensitivity fluorescence sensor from β-cyclodextrin-enhanced Eu3+ luminescence aggregates

verfasst von: Jing Wang, Tao Wang, Yimeng Hu, Xiaonan Zhang, Yanyan Ma, Hongmin Lv, Shanshan Xu, Yinglong Wang, Zike Jiang

Erschienen in: Journal of Materials Science | Ausgabe 18/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, novel β-cyclodextrin-enhanced Eu3+ luminescence aggregates (CELAs) with bright red fluorescence of Eu3+ are prepared. These CELAs exhibit the quick response and highly selective sensitivity at the concentration of 50 µM Fe3+. A series of ligands (such as TTA, phen, β-cyclodextrin) sensitizes the luminescence of Eu3+ (the “antenna effect”), and metal ions–ligands interactions can differentially alter the antenna effect of ligands toward Eu3+. Addition of EDTA to chelate Fe3+ restores the fluorescence, indicating that the fluorescence quenching in the presence of Fe3+ is reversible. This research provides that CELAs integrate these merits of superior lanthanide fluorescence and the amphiphilia property of β-cyclodextrin (β-CD). It is a unique system with enhancement Eu3+ luminescence in ethanol–water system and will be applied for aqueous solution detection sensor with high selectivity and reversibility for Fe3+. On the other hand, the on-off fluorescence property of the CELAs is convenient for environmental detection system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bowyer AA, Shen C, New EJ (2020) A fluorescent three-sensor array for heavy metals in environmental water sources. Analyst 145(4):1195–1201CrossRef Bowyer AA, Shen C, New EJ (2020) A fluorescent three-sensor array for heavy metals in environmental water sources. Analyst 145(4):1195–1201CrossRef
2.
Zurück zum Zitat Vinayak R, Nayek HP (2019) Organotin metalloligands for selective sensing of metal ions. New J Chem 43(19):7259–7268CrossRef Vinayak R, Nayek HP (2019) Organotin metalloligands for selective sensing of metal ions. New J Chem 43(19):7259–7268CrossRef
3.
Zurück zum Zitat Senthil Murugan A, Vidhyalakshmi N, Ramesh U, Annaraj J (2017) A Schiff’s base receptor for red fluorescence live cell imaging of Zn2+ ions in zebrafish embryos and naked eye detection of Ni2+ ions for bio-analytical applications. J Mater Chem B 5(17):3195–3200CrossRef Senthil Murugan A, Vidhyalakshmi N, Ramesh U, Annaraj J (2017) A Schiff’s base receptor for red fluorescence live cell imaging of Zn2+ ions in zebrafish embryos and naked eye detection of Ni2+ ions for bio-analytical applications. J Mater Chem B 5(17):3195–3200CrossRef
4.
Zurück zum Zitat Saleem M, Lee KH (2015) Optical sensor: a promising strategy for environmental and biomedical monitoring of ionic species. RSC Adv 5(88):72150–72287CrossRef Saleem M, Lee KH (2015) Optical sensor: a promising strategy for environmental and biomedical monitoring of ionic species. RSC Adv 5(88):72150–72287CrossRef
5.
Zurück zum Zitat You Y, Cho S, Nam W (2014) Cyclometalated iridium(III) complexes for phosphorescence sensing of biological metal ions. Inorg Chem 53(4):1804–1815CrossRef You Y, Cho S, Nam W (2014) Cyclometalated iridium(III) complexes for phosphorescence sensing of biological metal ions. Inorg Chem 53(4):1804–1815CrossRef
6.
Zurück zum Zitat Kumari N, Dey N, Jha S, Bhattacharya S (2013) Ratiometric, reversible, and parts per billion level detection of multiple toxic transition metal ions using a single probe in micellar media. ACS Appl Mater Interfaces 5(7):2438–2445CrossRef Kumari N, Dey N, Jha S, Bhattacharya S (2013) Ratiometric, reversible, and parts per billion level detection of multiple toxic transition metal ions using a single probe in micellar media. ACS Appl Mater Interfaces 5(7):2438–2445CrossRef
7.
Zurück zum Zitat Zhang X, Gou Z, Zuo Y, Lin W (2020) A novel polythioether-based rhodamine B fluorescent probe via successive click reaction and its application in iron ion detection and cell imaging. Spectrochim Acta Part A Mol Biomol Spectrosc 228:117679CrossRef Zhang X, Gou Z, Zuo Y, Lin W (2020) A novel polythioether-based rhodamine B fluorescent probe via successive click reaction and its application in iron ion detection and cell imaging. Spectrochim Acta Part A Mol Biomol Spectrosc 228:117679CrossRef
8.
Zurück zum Zitat Liu J, Guo Y, Dong B, Sun J, Lyu J, Sun L, Hu S, Xu L, Bai X, Xu W, Mintova S, Song H (2020) Water-soluble coumarin oligomer based ultra-sensitive iron ion probe and applications. Sens Actuators B Chem 320:128361CrossRef Liu J, Guo Y, Dong B, Sun J, Lyu J, Sun L, Hu S, Xu L, Bai X, Xu W, Mintova S, Song H (2020) Water-soluble coumarin oligomer based ultra-sensitive iron ion probe and applications. Sens Actuators B Chem 320:128361CrossRef
9.
Zurück zum Zitat Lee S, Uliana A, Taylor MK, Chakarawet K, Bandaru SRS, Gul S, Xu J, Ackerman Cheri M, Chatterjee R, Furukawa H, Reimer JA, Yano J, Gadgil A, Long GJ, Grandjean F, Long JR, Chang CJ (2019) Iron detection and remediation with a functionalized porous polymer applied to environmental water samples. Chem Sci 10(27):6651–6660CrossRef Lee S, Uliana A, Taylor MK, Chakarawet K, Bandaru SRS, Gul S, Xu J, Ackerman Cheri M, Chatterjee R, Furukawa H, Reimer JA, Yano J, Gadgil A, Long GJ, Grandjean F, Long JR, Chang CJ (2019) Iron detection and remediation with a functionalized porous polymer applied to environmental water samples. Chem Sci 10(27):6651–6660CrossRef
10.
Zurück zum Zitat Mallick D, Biswal B, Thirunavoukkarasu M, Mohanty R, Bag B (2017) Signalling probes appended with two rhodamine derivatives: inter-component preferences, Fe(III)-ion selective fluorescence responses and bio-imaging in plant species. New J Chem 41(24):15144–15156CrossRef Mallick D, Biswal B, Thirunavoukkarasu M, Mohanty R, Bag B (2017) Signalling probes appended with two rhodamine derivatives: inter-component preferences, Fe(III)-ion selective fluorescence responses and bio-imaging in plant species. New J Chem 41(24):15144–15156CrossRef
11.
Zurück zum Zitat Mahesh K, Karpagam S (2017) Thiophene-thiazole functionalized oligomers-excellent fluorescent sensing and selective probe for copper and iron ion. Sens Actuators B Chem 251:9–20CrossRef Mahesh K, Karpagam S (2017) Thiophene-thiazole functionalized oligomers-excellent fluorescent sensing and selective probe for copper and iron ion. Sens Actuators B Chem 251:9–20CrossRef
12.
Zurück zum Zitat Sahoo SK, Sharma D, Bera RK, Crisponi G, Callan JF (2012) Iron(III) selective molecular and supramolecular fluorescent probes. Chem Soc Rev 41(21):7195–7227CrossRef Sahoo SK, Sharma D, Bera RK, Crisponi G, Callan JF (2012) Iron(III) selective molecular and supramolecular fluorescent probes. Chem Soc Rev 41(21):7195–7227CrossRef
13.
Zurück zum Zitat Zeng C-H, Meng X-T, Xu S-S, Han L-J, Zhong S, Jia M-Y (2015) A polymorphic lanthanide complex as selective Co2+ sensor and luminescent timer. Sens Actuators B Chem 221:127–135CrossRef Zeng C-H, Meng X-T, Xu S-S, Han L-J, Zhong S, Jia M-Y (2015) A polymorphic lanthanide complex as selective Co2+ sensor and luminescent timer. Sens Actuators B Chem 221:127–135CrossRef
14.
Zurück zum Zitat Hanaoka K, Kikuchi K, Kojima H, Urano Y, Nagano T (2004) Development of a zinc Ion-selective luminescent lanthanide chemosensor for biological applications. J Am Chem Soc 126(39):12470–12476CrossRef Hanaoka K, Kikuchi K, Kojima H, Urano Y, Nagano T (2004) Development of a zinc Ion-selective luminescent lanthanide chemosensor for biological applications. J Am Chem Soc 126(39):12470–12476CrossRef
15.
Zurück zum Zitat Zhao Z-P, Jiang Y-F, Chen Y, Li H-R, Zheng Y, Zeng C-H, Zhong S, Guo P, Zhao Y-L (2018) Highly luminescent lanthanide complex as bifunctional sensor for Et2O and Fe2+. J Lumin 204:560–567CrossRef Zhao Z-P, Jiang Y-F, Chen Y, Li H-R, Zheng Y, Zeng C-H, Zhong S, Guo P, Zhao Y-L (2018) Highly luminescent lanthanide complex as bifunctional sensor for Et2O and Fe2+. J Lumin 204:560–567CrossRef
16.
Zurück zum Zitat Aleem AR, Liu J, Wang J, Wang J, Zhao Y, Wang Y, Wang Y, Wang W, Rehman FUL, Kipper MJ, Tang J (2020) Selective sensing of Cu2+ and Fe3+ Ions with Vis-excitation using fluorescent Eu3+-induced aggregates of polysaccharides (EIAP) in mammalian cells and aqueous systems. J Hazard Mater 399:122991CrossRef Aleem AR, Liu J, Wang J, Wang J, Zhao Y, Wang Y, Wang Y, Wang W, Rehman FUL, Kipper MJ, Tang J (2020) Selective sensing of Cu2+ and Fe3+ Ions with Vis-excitation using fluorescent Eu3+-induced aggregates of polysaccharides (EIAP) in mammalian cells and aqueous systems. J Hazard Mater 399:122991CrossRef
17.
Zurück zum Zitat Wang J, Liu J, Wang J, Wang Y, Cao J, Hou L, Ge R, Chi J, Huang L, Guo J, Aleem AR, Song Z, Tamang SK, Liu J, Wang G, Kipper MJ, Belfiore LA, Tang J (2020) Smart sensing of Cu2+ in living cells by water-soluble and nontoxic Tb3+/Eu3+-induced aggregates of polysaccharides through fluorescence imaging. J Mater Chem C 8(24):8171–8182CrossRef Wang J, Liu J, Wang J, Wang Y, Cao J, Hou L, Ge R, Chi J, Huang L, Guo J, Aleem AR, Song Z, Tamang SK, Liu J, Wang G, Kipper MJ, Belfiore LA, Tang J (2020) Smart sensing of Cu2+ in living cells by water-soluble and nontoxic Tb3+/Eu3+-induced aggregates of polysaccharides through fluorescence imaging. J Mater Chem C 8(24):8171–8182CrossRef
18.
Zurück zum Zitat Zhao C, Zhao L, Liu X, Meng L (2019) Synthesis and characterization of two Cd (II) complexes constructed with tricarboxylic acids and as a fluorescent probe of iron ions. Inorg Chim Acta 486:48–54CrossRef Zhao C, Zhao L, Liu X, Meng L (2019) Synthesis and characterization of two Cd (II) complexes constructed with tricarboxylic acids and as a fluorescent probe of iron ions. Inorg Chim Acta 486:48–54CrossRef
19.
Zurück zum Zitat Su H, Wang J, Yan L (2019) Homogeneously Synchronous Degradation of chitin into carbon dots and organic acids in aqueous solution. ACS Sustain Chem Eng 7(22):18476–18482CrossRef Su H, Wang J, Yan L (2019) Homogeneously Synchronous Degradation of chitin into carbon dots and organic acids in aqueous solution. ACS Sustain Chem Eng 7(22):18476–18482CrossRef
20.
Zurück zum Zitat Sui B, Tang S, Liu T, Kim B, Belfield KD (2014) Novel BODIPY-based fluorescence turn-on sensor for Fe3+ and its bioimaging application in living cells. ACS Appl Mater Interfaces 6(21):18408–18412CrossRef Sui B, Tang S, Liu T, Kim B, Belfield KD (2014) Novel BODIPY-based fluorescence turn-on sensor for Fe3+ and its bioimaging application in living cells. ACS Appl Mater Interfaces 6(21):18408–18412CrossRef
21.
Zurück zum Zitat Łukasik N, Wagner-Wysiecka E, Małachowska A (2019) Iron(iii)-selective materials based on a catechol-bearing amide for optical sensing. Analyst 144(9):3119–3127CrossRef Łukasik N, Wagner-Wysiecka E, Małachowska A (2019) Iron(iii)-selective materials based on a catechol-bearing amide for optical sensing. Analyst 144(9):3119–3127CrossRef
22.
Zurück zum Zitat Kagit R, Yildirim M, Ozay O, Yesilot S, Ozay H (2014) Phosphazene based multicentered naked-eye fluorescent sensor with high selectivity for Fe3+ Ions. Inorg Chem 53(4):2144–2151CrossRef Kagit R, Yildirim M, Ozay O, Yesilot S, Ozay H (2014) Phosphazene based multicentered naked-eye fluorescent sensor with high selectivity for Fe3+ Ions. Inorg Chem 53(4):2144–2151CrossRef
23.
Zurück zum Zitat Weng G, Thanneeru S, He J (2018) Dynamic coordination of Eu–iminodiacetate to control fluorochromic response of polymer hydrogels to multistimuli. Adv Mater 1706526 Weng G, Thanneeru S, He J (2018) Dynamic coordination of Eu–iminodiacetate to control fluorochromic response of polymer hydrogels to multistimuli. Adv Mater 1706526
24.
Zurück zum Zitat Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109(9):4283–4374CrossRef Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109(9):4283–4374CrossRef
25.
Zurück zum Zitat Chen P, Li Q, Grindy S, Holtenandersen N (2015) White-light-emitting lanthanide metallogels with tunable luminescence and reversible stimuli-responsive properties. J Am Chem Soc 137(36):11590–11593CrossRef Chen P, Li Q, Grindy S, Holtenandersen N (2015) White-light-emitting lanthanide metallogels with tunable luminescence and reversible stimuli-responsive properties. J Am Chem Soc 137(36):11590–11593CrossRef
26.
Zurück zum Zitat Seidi F, Shamsabadi AA, Amini M, Shabanian M, Crespy D (2019) Functional materials generated by allying cyclodextrin-based supramolecular chemistry with living polymerization. Polym Chem 10(27):3674–3711CrossRef Seidi F, Shamsabadi AA, Amini M, Shabanian M, Crespy D (2019) Functional materials generated by allying cyclodextrin-based supramolecular chemistry with living polymerization. Polym Chem 10(27):3674–3711CrossRef
27.
Zurück zum Zitat Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98(5):1743–1754CrossRef Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98(5):1743–1754CrossRef
28.
Zurück zum Zitat Serio N, Chanthalyma C, Prignano L, Levine M (2013) Cyclodextrin-enhanced extraction and energy transfer of carcinogens in complex oil environments. ACS Appl Mater Interfaces 5(22):11951–11957CrossRef Serio N, Chanthalyma C, Prignano L, Levine M (2013) Cyclodextrin-enhanced extraction and energy transfer of carcinogens in complex oil environments. ACS Appl Mater Interfaces 5(22):11951–11957CrossRef
29.
Zurück zum Zitat Ren Z, Xu Y, Lu Z, Wang Z, Chen C, Guo Y, Shi X, Li F, Yang J, Zheng Y (2019) Construction of a water-soluble and photostable rubropunctatin/β-cyclodextrin drug carrier. RSC Advances 9(20):11396–11405CrossRef Ren Z, Xu Y, Lu Z, Wang Z, Chen C, Guo Y, Shi X, Li F, Yang J, Zheng Y (2019) Construction of a water-soluble and photostable rubropunctatin/β-cyclodextrin drug carrier. RSC Advances 9(20):11396–11405CrossRef
30.
Zurück zum Zitat Morrison PWJ, Connon CJ, Khutoryanskiy VV (2013) Cyclodextrin-mediated enhancement of riboflavin solubility and corneal permeability. Mol Pharm 10(2):756–762CrossRef Morrison PWJ, Connon CJ, Khutoryanskiy VV (2013) Cyclodextrin-mediated enhancement of riboflavin solubility and corneal permeability. Mol Pharm 10(2):756–762CrossRef
31.
Zurück zum Zitat Samperio C, Boyer R, Eigel WN, Holland KW, McKinney JS, O’Keefe SF, Smith R, Marcy JE (2010) Enhancement of plant essential oils’ aqueous solubility and stability using alpha and beta cyclodextrin. J Agric Food Chem 58(24):12950–12956CrossRef Samperio C, Boyer R, Eigel WN, Holland KW, McKinney JS, O’Keefe SF, Smith R, Marcy JE (2010) Enhancement of plant essential oils’ aqueous solubility and stability using alpha and beta cyclodextrin. J Agric Food Chem 58(24):12950–12956CrossRef
32.
Zurück zum Zitat Schmidt BVKJ, Hetzer M, Ritter H, Barner-Kowollik C (2014) Complex macromolecular architecture design via cyclodextrin host/guest complexes. Prog Polym Sci 39(1):235–249CrossRef Schmidt BVKJ, Hetzer M, Ritter H, Barner-Kowollik C (2014) Complex macromolecular architecture design via cyclodextrin host/guest complexes. Prog Polym Sci 39(1):235–249CrossRef
33.
Zurück zum Zitat Jing J, Szarpak-Jankowska A, Guillot R, Pignot-Paintrand I, Picart C, Auzély-Velty R (2013) Cyclodextrin/paclitaxel complex in biodegradable capsules for breast cancer treatment. Chem Mater 25(19):3867–3873CrossRef Jing J, Szarpak-Jankowska A, Guillot R, Pignot-Paintrand I, Picart C, Auzély-Velty R (2013) Cyclodextrin/paclitaxel complex in biodegradable capsules for breast cancer treatment. Chem Mater 25(19):3867–3873CrossRef
34.
Zurück zum Zitat Sinha A, Jana NR (2015) Separation of microcystin-LR by cyclodextrin-functionalized magnetic composite of colloidal graphene and porous silica. ACS Appl Mater Interfaces 7(18):9911–9919CrossRef Sinha A, Jana NR (2015) Separation of microcystin-LR by cyclodextrin-functionalized magnetic composite of colloidal graphene and porous silica. ACS Appl Mater Interfaces 7(18):9911–9919CrossRef
35.
Zurück zum Zitat Sherje AP, Dravyakar BR, Kadam D, Jadhav M (2017) Cyclodextrin-based nanosponges: a critical review. Carbohyd Polym 173:37–49CrossRef Sherje AP, Dravyakar BR, Kadam D, Jadhav M (2017) Cyclodextrin-based nanosponges: a critical review. Carbohyd Polym 173:37–49CrossRef
36.
Zurück zum Zitat Schofield WCE, Badyal JPS (2011) Controlled fragrant molecule release from surface-tethered Cyclodextrin host-guest inclusion complexes. ACS Appl Mater Interfaces 3(6):2051–2056CrossRef Schofield WCE, Badyal JPS (2011) Controlled fragrant molecule release from surface-tethered Cyclodextrin host-guest inclusion complexes. ACS Appl Mater Interfaces 3(6):2051–2056CrossRef
37.
Zurück zum Zitat Massaro M, Colletti CG, Lazzara G, Guernelli S, Noto R, Riela S (2017) Synthesis and characterization of halloysite-cyclodextrin Nanosponges for enhanced dyes adsorption. ACS Sustain Chem Eng 5(4):3346–3352CrossRef Massaro M, Colletti CG, Lazzara G, Guernelli S, Noto R, Riela S (2017) Synthesis and characterization of halloysite-cyclodextrin Nanosponges for enhanced dyes adsorption. ACS Sustain Chem Eng 5(4):3346–3352CrossRef
38.
Zurück zum Zitat Chen M, Pérez RL, Du P, Bhattarai N, McDonough KC, Ravula S, Kumar R, Mathis JM, Warner IM (2019) Tumor-targeting NIRF NanoGUMBOS with Cyclodextrin-enhanced chemo/photothermal antitumor activities. ACS Appl Mater Interfaces 11(31):27548–27557CrossRef Chen M, Pérez RL, Du P, Bhattarai N, McDonough KC, Ravula S, Kumar R, Mathis JM, Warner IM (2019) Tumor-targeting NIRF NanoGUMBOS with Cyclodextrin-enhanced chemo/photothermal antitumor activities. ACS Appl Mater Interfaces 11(31):27548–27557CrossRef
39.
Zurück zum Zitat Pramanik, A.; Amer, S.; Grynszpan, F.; Levine, M. (2020) Highly sensitive detection of cobalt through fluorescence changes in β-cyclodextrin-bimane complexes. Chemical Communication. Pramanik, A.; Amer, S.; Grynszpan, F.; Levine, M. (2020) Highly sensitive detection of cobalt through fluorescence changes in β-cyclodextrin-bimane complexes. Chemical Communication.
40.
Zurück zum Zitat Hayashi N, Chen R, Hiraoka M, Ujihara T, Ikezaki H (2010) β-Cyclodextrin/surface plasmon resonance detection system for sensing bitter-astringent taste intensity of green tea catechins. J Agric Food Chem 58(14):8351–8356CrossRef Hayashi N, Chen R, Hiraoka M, Ujihara T, Ikezaki H (2010) β-Cyclodextrin/surface plasmon resonance detection system for sensing bitter-astringent taste intensity of green tea catechins. J Agric Food Chem 58(14):8351–8356CrossRef
41.
Zurück zum Zitat Belica-Pacha S, Miłowska K, Ionov M, Bryszewska M, Buczkowski A, Budryn G, Oracz J, Zaczyńska D, Wróblewska A, Urbaniak P, Pałecz B (2020) The impact of β-cyclodextrin on biological and chemical properties of mianserin hydrochloride in aqueous solution. J Mol Liq 314:113589CrossRef Belica-Pacha S, Miłowska K, Ionov M, Bryszewska M, Buczkowski A, Budryn G, Oracz J, Zaczyńska D, Wróblewska A, Urbaniak P, Pałecz B (2020) The impact of β-cyclodextrin on biological and chemical properties of mianserin hydrochloride in aqueous solution. J Mol Liq 314:113589CrossRef
42.
Zurück zum Zitat Niu H, Chen W, Chen W, Yun Y, Zhong Q, Fu X, Chen H, Liu G (2019) Preparation and characterization of a modified-β-Cyclodextrin/β-Carotene inclusion complex and Its application in pickering emulsions. J Agric Food Chem 67(46):12875–12884CrossRef Niu H, Chen W, Chen W, Yun Y, Zhong Q, Fu X, Chen H, Liu G (2019) Preparation and characterization of a modified-β-Cyclodextrin/β-Carotene inclusion complex and Its application in pickering emulsions. J Agric Food Chem 67(46):12875–12884CrossRef
43.
Zurück zum Zitat Milović NM, Badjić JD, Kostić NM (2004) Conjugate of palladium(II) complex and β-Cyclodextrin acts as a biomimetic peptidase. J Am Chem Soc 126(3):696–697CrossRef Milović NM, Badjić JD, Kostić NM (2004) Conjugate of palladium(II) complex and β-Cyclodextrin acts as a biomimetic peptidase. J Am Chem Soc 126(3):696–697CrossRef
44.
Zurück zum Zitat Li X, Gao X, Shi W, Ma H (2014) Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem Rev 114(1):590–659CrossRef Li X, Gao X, Shi W, Ma H (2014) Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem Rev 114(1):590–659CrossRef
45.
Zurück zum Zitat Han C, Wang R, Wang K, Xu H, Sui M, Li J, Xu K (2016) Highly fluorescent carbon dots as selective and sensitive “on-off-on” probes for iron(III) ion and apoferritin detection and imaging in living cells. Biosens Bioelectron 83:229–236CrossRef Han C, Wang R, Wang K, Xu H, Sui M, Li J, Xu K (2016) Highly fluorescent carbon dots as selective and sensitive “on-off-on” probes for iron(III) ion and apoferritin detection and imaging in living cells. Biosens Bioelectron 83:229–236CrossRef
46.
Zurück zum Zitat Gunnlaugsson T, Leonard JP, Sénéchal K, Harte AJ (2004) Eu(III)–cyclen–phen conjugate as a luminescent copper sensor: the formation of mixed polymetallic macrocyclic complexes in water. Chem Commun 7:782–783CrossRef Gunnlaugsson T, Leonard JP, Sénéchal K, Harte AJ (2004) Eu(III)–cyclen–phen conjugate as a luminescent copper sensor: the formation of mixed polymetallic macrocyclic complexes in water. Chem Commun 7:782–783CrossRef
47.
Zurück zum Zitat Guo J, Tang J, Wang J, Mao S, Li H, Wang Y, Liu J, Wang Y, Huang L, Kipper M, Belfiore L (2018) Europium(III)-induced water-soluble nano-aggregates of hyaluronic acid and chitosan: structure and fluorescence. MRS Commun 8:1–6CrossRef Guo J, Tang J, Wang J, Mao S, Li H, Wang Y, Liu J, Wang Y, Huang L, Kipper M, Belfiore L (2018) Europium(III)-induced water-soluble nano-aggregates of hyaluronic acid and chitosan: structure and fluorescence. MRS Commun 8:1–6CrossRef
48.
Zurück zum Zitat Li X, Wang J, Liu J, Tang J, Wang J, Guo J, Wang Y, Huang L, Aleem AR, Kipper MJ, Belfiore LA (2019) Strong luminescence and sharp heavy metal ion sensitivity of water-soluble hybrid polysaccharide nanoparticles with Eu3+ and Tb3+ inclusions. Appl Nanosci 9(8):1833–1844CrossRef Li X, Wang J, Liu J, Tang J, Wang J, Guo J, Wang Y, Huang L, Aleem AR, Kipper MJ, Belfiore LA (2019) Strong luminescence and sharp heavy metal ion sensitivity of water-soluble hybrid polysaccharide nanoparticles with Eu3+ and Tb3+ inclusions. Appl Nanosci 9(8):1833–1844CrossRef
49.
Zurück zum Zitat Xue S-F, Chen Z-H, Han X-Y, Lin Z-Y, Wang Q-X, Zhang M, Shi G (2018) DNA encountering terbium(III): a smart, “chemical nose/tongue” for large-scale time-gated luminescent and lifetime-based sensing. Anal Chem 90(5):3443–3451CrossRef Xue S-F, Chen Z-H, Han X-Y, Lin Z-Y, Wang Q-X, Zhang M, Shi G (2018) DNA encountering terbium(III): a smart, “chemical nose/tongue” for large-scale time-gated luminescent and lifetime-based sensing. Anal Chem 90(5):3443–3451CrossRef
Metadaten
Titel
Fe3+ sensitivity fluorescence sensor from β-cyclodextrin-enhanced Eu3+ luminescence aggregates
verfasst von
Jing Wang
Tao Wang
Yimeng Hu
Xiaonan Zhang
Yanyan Ma
Hongmin Lv
Shanshan Xu
Yinglong Wang
Zike Jiang
Publikationsdatum
12.03.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 18/2021
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-05961-8

Weitere Artikel der Ausgabe 18/2021

Journal of Materials Science 18/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.