Skip to main content
Erschienen in: Journal of Material Cycles and Waste Management 2/2021

20.01.2021 | ORIGINAL ARTICLE

Feasibility of platinum recovery from waste automotive catalyst with different carriers via cooperative smelting-collection process

verfasst von: Chuan Liu, Shuchen Sun, Xiaoping Zhu, Ganfeng Tu

Erschienen in: Journal of Material Cycles and Waste Management | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Large amounts of waste automotive catalyst (WAC) containing platinum are generated as the automotive scrapped, which not only wastes platinum resources, but also causes environment impacts if WAC is not addressed. In this research, a novel and effective smelting-collection process for recovering platinum from WAC was proposed. The different WAC carriers (cordierite carrier and alumina carrier) are mixed and subjected to smelting-collection with the addition of collector metal of iron powder and flux agent of CaO. The carrier materials serves as slag constituents, and the addition of extra slagging flux such as SiO2 and Al2O3 was nearly avoided compared to platinum recovery from single WAC carrier. Experimental results indicated that the maximum platinum recovery was over 98%, when cordierite carrier WAC addition, collector metal addition, CaO/SiO2 mass ratio, smelting temperature, and holding time were 80 wt%, 10.5 wt%, 0.5, 1550 °C and 120 min, respectively. After smelting, platinum is concentrated into Fe–Pt alloy, and the glass slag which is believed to be safe to the environment is obtained. The results indicated that platinum content in obtained alloy and glass slag was 0.63 wt% and 9.4 g/t, respectively. This proposed process is an effective and economical approach for recovery platinum from WAC.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sakai S, Yoshida H, Hiratsuka J, Vandecasteel C, Kohlmeyer R, Rotter VS, Passarini F, Santini A, Peeler M, Li JH, Oh GJ, Chi NK, Bastian L, Moore S, Kajiwara N, Takigami H, Itai T, Takahashi S, Tanabe S, Tomoda K, Hirakawa T, Hirai Y, Asari M, Yano AJ (2014) An international comparative study of end-of-life vehicle (ELV) recycling systems. J Mater Cycles Waste Manage 16(1):1–20CrossRef Sakai S, Yoshida H, Hiratsuka J, Vandecasteel C, Kohlmeyer R, Rotter VS, Passarini F, Santini A, Peeler M, Li JH, Oh GJ, Chi NK, Bastian L, Moore S, Kajiwara N, Takigami H, Itai T, Takahashi S, Tanabe S, Tomoda K, Hirakawa T, Hirai Y, Asari M, Yano AJ (2014) An international comparative study of end-of-life vehicle (ELV) recycling systems. J Mater Cycles Waste Manage 16(1):1–20CrossRef
2.
Zurück zum Zitat Yano JY, Xu GC, Liu HP, Toyoguchi T, Iwasawa H, Sakai S (2019) Resource and toxic characterization in end-of-life vehicles through dismantling survey. J Mater Cycles Waste Manage 6(6):1488–1504CrossRef Yano JY, Xu GC, Liu HP, Toyoguchi T, Iwasawa H, Sakai S (2019) Resource and toxic characterization in end-of-life vehicles through dismantling survey. J Mater Cycles Waste Manage 6(6):1488–1504CrossRef
3.
Zurück zum Zitat Johnson M (2019) PGM Market Report 2018. Royston: Johnson Matthey’s Johnson M (2019) PGM Market Report 2018. Royston: Johnson Matthey’s
4.
Zurück zum Zitat Wang L, Chen M (2013) Policies and perspective on end-of-life vehicles in China. J Cleaner Prod 44:168–176CrossRef Wang L, Chen M (2013) Policies and perspective on end-of-life vehicles in China. J Cleaner Prod 44:168–176CrossRef
5.
Zurück zum Zitat Alekseeva TY, Karpov YA, Dal’nova OA, Es’kina VV, Baranovskaya VB, Gorbatova LD (2019) Current state and problems of analytical control of spent automotive catalyst (review). Int J Inorg Mater 54(14):1421–1429CrossRef Alekseeva TY, Karpov YA, Dal’nova OA, Es’kina VV, Baranovskaya VB, Gorbatova LD (2019) Current state and problems of analytical control of spent automotive catalyst (review). Int J Inorg Mater 54(14):1421–1429CrossRef
6.
Zurück zum Zitat Mouza AA, Peolides CA, Paras SV (1995) Utilization of used auto-catalytic converters in small countries: The Greek paradigm. Resour Conserv Recycl 15(2):95–110CrossRef Mouza AA, Peolides CA, Paras SV (1995) Utilization of used auto-catalytic converters in small countries: The Greek paradigm. Resour Conserv Recycl 15(2):95–110CrossRef
7.
Zurück zum Zitat Jha MK, Lee JC, Kim MS, Jeong JK, Kim BS, Kumar V (2013) Hydrometallurgical recovery/recycling of platinum by the leaching of spent catalyst: a review. Hydrometallurgy 133:23–32CrossRef Jha MK, Lee JC, Kim MS, Jeong JK, Kim BS, Kumar V (2013) Hydrometallurgical recovery/recycling of platinum by the leaching of spent catalyst: a review. Hydrometallurgy 133:23–32CrossRef
8.
Zurück zum Zitat Seetharaman S (2013) Treatise on process metallurgy, industrial processes, vol 3. Elsevier, Amsterdam Seetharaman S (2013) Treatise on process metallurgy, industrial processes, vol 3. Elsevier, Amsterdam
9.
Zurück zum Zitat Wu XF, Wang YH, Tong WF (2010) A novel extraction process of PGM from spent automotive catalyst converters by wet–fire metallurgical technique combined method. Precious Met 31:24–28 Wu XF, Wang YH, Tong WF (2010) A novel extraction process of PGM from spent automotive catalyst converters by wet–fire metallurgical technique combined method. Precious Met 31:24–28
10.
Zurück zum Zitat Aberasturi DJ, Pinedo R, Larramendi IR, Larramendi JI, Rojo T (2011) Recovery by hydrometallurgical extraction of the platinum-group metals from car catalytic converters. Miner Eng 24(6):505–513CrossRef Aberasturi DJ, Pinedo R, Larramendi IR, Larramendi JI, Rojo T (2011) Recovery by hydrometallurgical extraction of the platinum-group metals from car catalytic converters. Miner Eng 24(6):505–513CrossRef
11.
Zurück zum Zitat Chen J, Huang K (2006) A new technique for extraction of platinum group metals by pressure cyanidation. Hydrometallurgy 82(3–4):164–171CrossRef Chen J, Huang K (2006) A new technique for extraction of platinum group metals by pressure cyanidation. Hydrometallurgy 82(3–4):164–171CrossRef
12.
Zurück zum Zitat Kizilaslan E, Aktas S, Sesen MK (2009) Towards environmentally safe recovery of platinum from scrap automotive catalytic converters. Turk J Eng Environ Sci 33(2):83–90 Kizilaslan E, Aktas S, Sesen MK (2009) Towards environmentally safe recovery of platinum from scrap automotive catalytic converters. Turk J Eng Environ Sci 33(2):83–90
13.
Zurück zum Zitat Benson M, Bennett CR, Harry JE, Patel MK, Cross M (2000) The recovery mechanism of platinum group metals from catalytic converters in spent automotive exhaust systems. Resour Conserv Recycl 31(1):1–7CrossRef Benson M, Bennett CR, Harry JE, Patel MK, Cross M (2000) The recovery mechanism of platinum group metals from catalytic converters in spent automotive exhaust systems. Resour Conserv Recycl 31(1):1–7CrossRef
14.
Zurück zum Zitat Juvonen R, Lakomaa T, Soikkeli L (2002) Determination of gold and the platinum group elements in geological samples by ICP-MS after nickel sulphide fire assay: difficulties encountered with different types of geological samples. Talanta 58(3):595–603CrossRef Juvonen R, Lakomaa T, Soikkeli L (2002) Determination of gold and the platinum group elements in geological samples by ICP-MS after nickel sulphide fire assay: difficulties encountered with different types of geological samples. Talanta 58(3):595–603CrossRef
15.
Zurück zum Zitat Kim BS, Lee JC, Seo SP, Park YK, Sohn HY (2004) A process for extracting precious metals from spent printed circuit boards and automotive catalyst. JOM 56(12):55–58CrossRef Kim BS, Lee JC, Seo SP, Park YK, Sohn HY (2004) A process for extracting precious metals from spent printed circuit boards and automotive catalyst. JOM 56(12):55–58CrossRef
16.
Zurück zum Zitat Compernolle S, Wambeke D, Raedt DI, Kimpe K, Vanhaecke F (2011) Direct determination of Pd, Pt and Rh in fire assay lead buttons by laser ablation-ICP-OES: automotive exhaust catalyst as an example. J Anal At Spectrom 26(8):1679–1684CrossRef Compernolle S, Wambeke D, Raedt DI, Kimpe K, Vanhaecke F (2011) Direct determination of Pd, Pt and Rh in fire assay lead buttons by laser ablation-ICP-OES: automotive exhaust catalyst as an example. J Anal At Spectrom 26(8):1679–1684CrossRef
17.
Zurück zum Zitat Kolliopoulos G, Balomenos E, Giannopoulou L, Yakoumis L, Panias D (2010) Behavior of platinum group during their pyrometallurgical recovery from spent automotive catalyst. Open Access Lib J 1(5):1 Kolliopoulos G, Balomenos E, Giannopoulou L, Yakoumis L, Panias D (2010) Behavior of platinum group during their pyrometallurgical recovery from spent automotive catalyst. Open Access Lib J 1(5):1
18.
Zurück zum Zitat Peng ZW, Li ZZ, Lin XL, Tang HM, Ye L, Ma YT, Rao MJ, Zhang YB, Li GH, Jiang T (2017) Pyrometallurgical recovery of platinum group metals from spent catalyst. JOM 69(9):1553–1562CrossRef Peng ZW, Li ZZ, Lin XL, Tang HM, Ye L, Ma YT, Rao MJ, Zhang YB, Li GH, Jiang T (2017) Pyrometallurgical recovery of platinum group metals from spent catalyst. JOM 69(9):1553–1562CrossRef
19.
Zurück zum Zitat Taninouchi YK, Okabe TH (2018a) Effective alloying treatment for platinum using iron chloride vapor. Mater Trans 59(1):88–97CrossRef Taninouchi YK, Okabe TH (2018a) Effective alloying treatment for platinum using iron chloride vapor. Mater Trans 59(1):88–97CrossRef
20.
Zurück zum Zitat Taninouchi YK, Watanabe T, Okabe TH (2017) Recovery of platinum group metals from spent catalyst using electroless nickel plating and magnetic separation. Mater Trans 58(3):410–419CrossRef Taninouchi YK, Watanabe T, Okabe TH (2017) Recovery of platinum group metals from spent catalyst using electroless nickel plating and magnetic separation. Mater Trans 58(3):410–419CrossRef
21.
Zurück zum Zitat Liu GF, Ichinose T, Tokumaru A, Owada SJ (2014) Surface-grinding kinetics for the concentration of PGMs from spent automotive catalyst by attritor surface grinding. Mater Trans 55(6):978–985CrossRef Liu GF, Ichinose T, Tokumaru A, Owada SJ (2014) Surface-grinding kinetics for the concentration of PGMs from spent automotive catalyst by attritor surface grinding. Mater Trans 55(6):978–985CrossRef
22.
Zurück zum Zitat Kim W, Kim B, Choi D, Oki T, Kim S (2010) Selective recovery of catalyst layer from supporting matrix of ceramic-honeycomb-type automotive catalyst. J Hazard Mater 183(1–3):29–34CrossRef Kim W, Kim B, Choi D, Oki T, Kim S (2010) Selective recovery of catalyst layer from supporting matrix of ceramic-honeycomb-type automotive catalyst. J Hazard Mater 183(1–3):29–34CrossRef
23.
Zurück zum Zitat Danzaki Y, Ashino T (2010) New convenient dissolution of iron-rhodium alloys using hydrochloric acid containing a small amount of nitric acid without heating for an ICP-AES analysis. Anal Sci 17(8):1011–1013CrossRef Danzaki Y, Ashino T (2010) New convenient dissolution of iron-rhodium alloys using hydrochloric acid containing a small amount of nitric acid without heating for an ICP-AES analysis. Anal Sci 17(8):1011–1013CrossRef
24.
Zurück zum Zitat Yoo S (1998) Metal recovery and rejuvenation of metal-loaded spent catalysts. Catal Today 44:27–46CrossRef Yoo S (1998) Metal recovery and rejuvenation of metal-loaded spent catalysts. Catal Today 44:27–46CrossRef
25.
Zurück zum Zitat Taninouchi YK, Okabe TH (2018b) Recovery of platinum group metals from spent catalyst using iron chloride vapor treatment. Metall Mater Trans B 49(4):1781–1973CrossRef Taninouchi YK, Okabe TH (2018b) Recovery of platinum group metals from spent catalyst using iron chloride vapor treatment. Metall Mater Trans B 49(4):1781–1973CrossRef
26.
Zurück zum Zitat You G, Fang W, Li Q, Ma Y, Yang XT, Yang H (2016) Study on enrichment method of platinum, palladium and rhodium in spent auto-catalyst. Metall Anal 36(1):7–11 You G, Fang W, Li Q, Ma Y, Yang XT, Yang H (2016) Study on enrichment method of platinum, palladium and rhodium in spent auto-catalyst. Metall Anal 36(1):7–11
27.
Zurück zum Zitat Dong HG, Zhao JC, Chen JL, WuL YDBJ (2010) Recovery of platinum group metals from spent catalyst: a review. Int J Miner Process 145:108–113CrossRef Dong HG, Zhao JC, Chen JL, WuL YDBJ (2010) Recovery of platinum group metals from spent catalyst: a review. Int J Miner Process 145:108–113CrossRef
28.
Zurück zum Zitat Fornalczyk A, Saternus M (2013) Vapour treatment method against other pyro-and hydrometallurgical processes applied to recover platinum from used auto- catalytic converters. Acta Metall Sinica 26(3):247–256CrossRef Fornalczyk A, Saternus M (2013) Vapour treatment method against other pyro-and hydrometallurgical processes applied to recover platinum from used auto- catalytic converters. Acta Metall Sinica 26(3):247–256CrossRef
29.
Zurück zum Zitat Mishra RK (1988) Recovery of platinum group metals from automobile catalytic converters—a review. The Miner Metal Mater Soc: Precious Met 89:483–501 Mishra RK (1988) Recovery of platinum group metals from automobile catalytic converters—a review. The Miner Metal Mater Soc: Precious Met 89:483–501
30.
Zurück zum Zitat Hoffmann JE (1988) Recovering platinum-group metals from auto catalyst. JOM 40(6):40–44CrossRef Hoffmann JE (1988) Recovering platinum-group metals from auto catalyst. JOM 40(6):40–44CrossRef
31.
Zurück zum Zitat Burkhard R, Hoffelner W, Eschenbach RC (1994) Recycling of metals from waste with thermal plasma. Resour Conserv Recycl 10(2):11–16CrossRef Burkhard R, Hoffelner W, Eschenbach RC (1994) Recycling of metals from waste with thermal plasma. Resour Conserv Recycl 10(2):11–16CrossRef
32.
Zurück zum Zitat Zhao HZ (1998) Analysis of phases in metallurgical products of plasma treating PGMs secondary resources. Chin J Nonferr Met 8(2):314–317 Zhao HZ (1998) Analysis of phases in metallurgical products of plasma treating PGMs secondary resources. Chin J Nonferr Met 8(2):314–317
33.
Zurück zum Zitat Tang XL, Zhang ZT, Guo M, Zhang M, Wang XD (2011) Viscosities behavior of CaO–SiO2–MgO–Al2O3 slag with a low mass ratio of CaO to SiO2 and wide range of Al2O3 content. J Iron Steel Res Int 18(2):1–6CrossRef Tang XL, Zhang ZT, Guo M, Zhang M, Wang XD (2011) Viscosities behavior of CaO–SiO2–MgO–Al2O3 slag with a low mass ratio of CaO to SiO2 and wide range of Al2O3 content. J Iron Steel Res Int 18(2):1–6CrossRef
34.
Zurück zum Zitat Nakamura S, Nobuo S (1997) Solubility of platinum in molten fluxes as a measure of basicity. Metall Mater Trans B 28(1):103–108CrossRef Nakamura S, Nobuo S (1997) Solubility of platinum in molten fluxes as a measure of basicity. Metall Mater Trans B 28(1):103–108CrossRef
35.
Zurück zum Zitat Benson M, Bennett CR, Patel MK, Harry JE, Cross M (2013) Collector-metal behavior in the recovery of platinum-group metals from catalytic converters. Miner Process Extr Metall Rev 109(1):6–10CrossRef Benson M, Bennett CR, Patel MK, Harry JE, Cross M (2013) Collector-metal behavior in the recovery of platinum-group metals from catalytic converters. Miner Process Extr Metall Rev 109(1):6–10CrossRef
36.
Zurück zum Zitat Kirichenko AS, Seregin AN (2017) Efficiency rise of pyrometallurgical processing of wasted automotive catalyst using Fe-based metal collector. Chern Metall (11):59–63 Kirichenko AS, Seregin AN (2017) Efficiency rise of pyrometallurgical processing of wasted automotive catalyst using Fe-based metal collector. Chern Metall (11):59–63
37.
Zurück zum Zitat Nakamoto M, Miyabayashi Y, Holappa L, Tanaka T (2007) A model for estimating viscosities of aluminosilicate melts containing alkali oxides. ISIJ Int 47(10):1409–1415CrossRef Nakamoto M, Miyabayashi Y, Holappa L, Tanaka T (2007) A model for estimating viscosities of aluminosilicate melts containing alkali oxides. ISIJ Int 47(10):1409–1415CrossRef
38.
Zurück zum Zitat Chu JP, Hwang IJ, Tzeng CC, Kuo YY, Yu YJ (1998) Characterization of vitrified slag from mixed medical waste surrogates treated by a thermal plasma system. J Hazard Mater 58(1–3):179–194CrossRef Chu JP, Hwang IJ, Tzeng CC, Kuo YY, Yu YJ (1998) Characterization of vitrified slag from mixed medical waste surrogates treated by a thermal plasma system. J Hazard Mater 58(1–3):179–194CrossRef
39.
Zurück zum Zitat RomeroHerna’ndez-Crespo MMS, Rinco’n JM (2013) Leaching behaviour of a glassy slag and derived glass ceramics from arc plasma vitrification of hospital wastes. Adv Appl Ceram 108(1):67–71 RomeroHerna’ndez-Crespo MMS, Rinco’n JM (2013) Leaching behaviour of a glassy slag and derived glass ceramics from arc plasma vitrification of hospital wastes. Adv Appl Ceram 108(1):67–71
Metadaten
Titel
Feasibility of platinum recovery from waste automotive catalyst with different carriers via cooperative smelting-collection process
verfasst von
Chuan Liu
Shuchen Sun
Xiaoping Zhu
Ganfeng Tu
Publikationsdatum
20.01.2021
Verlag
Springer Japan
Erschienen in
Journal of Material Cycles and Waste Management / Ausgabe 2/2021
Print ISSN: 1438-4957
Elektronische ISSN: 1611-8227
DOI
https://doi.org/10.1007/s10163-020-01143-x

Weitere Artikel der Ausgabe 2/2021

Journal of Material Cycles and Waste Management 2/2021 Zur Ausgabe