Skip to main content
Erschienen in: Quantum Information Processing 5/2021

01.05.2021

Feasible noiseless linear amplification for single-photon qudit and two-photon hyperentanglement encoded in three degrees of freedom

verfasst von: Bao-Wen Xu, Jie Zhang, Lan Zhou, Wei Zhong, Yu-Bo Sheng

Erschienen in: Quantum Information Processing | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hyper-encoded photon qudits and hyperentanglement can effectively increase the channel capacity and have been widely used in quantum communication field. Photon transmission loss is one of the main obstacles of quantum communication, which can reduce the communication efficiency and even threaten the security. In the paper, we propose a feasible noiseless linear amplification (NLA) protocol for protecting the single-photon qudit and two-photon hyperentanglement encoded in polarization and double-longitudinal momentum degrees of freedom (DOFs). The NLA protocol is in linear optics, and especially, it adopts practical imperfect single photon sources to generate auxiliary photons. As a result, it can be realized under current experimental condition. By performing the NLA protocol, we can increase the fidelity of target qudit and hyperentanglement and preserve their encoding features in all DOFs. This NLA protocol has application potential in current and future high-capacity quantum communication field.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetMATHCrossRef Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetMATHCrossRef
2.
Zurück zum Zitat Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)ADSMATHCrossRef Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)ADSMATHCrossRef
3.
Zurück zum Zitat Hu, X.M., Zhang, C., Zhang, C.J., Liu, B.H., Huang, Y.F., Han, Y.J., Li, C.F., Guo, G.C.: Experimental certification for nonclassical teleportation. Q. Eng. 1, e3 (2019) Hu, X.M., Zhang, C., Zhang, C.J., Liu, B.H., Huang, Y.F., Han, Y.J., Li, C.F., Guo, G.C.: Experimental certification for nonclassical teleportation. Q. Eng. 1, e3 (2019)
4.
Zurück zum Zitat Yan, Z.H., Qin, J.L., Qin, Z.Z., Su, X.L., Jia, X.J., Xie, C.D., Peng, K.C.: Generation of non-classical states of light and their application in deterministic quantum teleportation. Fundam. Res. 1, 43–49 (2021)CrossRef Yan, Z.H., Qin, J.L., Qin, Z.Z., Su, X.L., Jia, X.J., Xie, C.D., Peng, K.C.: Generation of non-classical states of light and their application in deterministic quantum teleportation. Fundam. Res. 1, 43–49 (2021)CrossRef
5.
Zurück zum Zitat Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175. IEEE, New York (1984) Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175. IEEE, New York (1984)
7.
Zurück zum Zitat Lu, W.Z., Huang, C.H., Hou, K., Shi, L.T., Zhao, H.H., Li, Z.M., Qiu, J.F.: Recurrent neural network approach to quantum signal: coherent state restoration for continuous-variable quantum key distribution. Quantum Inf. Process. 17, 109 (2018)ADSMathSciNetMATHCrossRef Lu, W.Z., Huang, C.H., Hou, K., Shi, L.T., Zhao, H.H., Li, Z.M., Qiu, J.F.: Recurrent neural network approach to quantum signal: coherent state restoration for continuous-variable quantum key distribution. Quantum Inf. Process. 17, 109 (2018)ADSMathSciNetMATHCrossRef
8.
Zurück zum Zitat Yin, Z.Q., Lu, F.Y., Teng, J., Wang, S., Chen, W., Guo, G.C., Han, Z.F.: Twin-field protocols: towards intercity quantum key distribution without quantum repeaters. Fundam. Res. 1, 93–95 (2021)CrossRef Yin, Z.Q., Lu, F.Y., Teng, J., Wang, S., Chen, W., Guo, G.C., Han, Z.F.: Twin-field protocols: towards intercity quantum key distribution without quantum repeaters. Fundam. Res. 1, 93–95 (2021)CrossRef
9.
Zurück zum Zitat Guo, H., Li, Z.Y., Yu, S., Zhang, Y.C.: Toward practical quantum key distribution using telecom components. Fundam. Res. 1, 96–98 (2021)CrossRef Guo, H., Li, Z.Y., Yu, S., Zhang, Y.C.: Toward practical quantum key distribution using telecom components. Fundam. Res. 1, 96–98 (2021)CrossRef
10.
Zurück zum Zitat Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)ADSMathSciNetMATHCrossRef Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)ADSMathSciNetMATHCrossRef
11.
Zurück zum Zitat Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRef Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRef
12.
Zurück zum Zitat Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)ADSCrossRef Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)ADSCrossRef
13.
Zurück zum Zitat Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)ADSCrossRef Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)ADSCrossRef
14.
Zurück zum Zitat Gao, Z.K., Li, T., Li, Z.H.: Long-distance measurement-device-independent quantum secure direct communication. EPL 125, 40004 (2019)ADSCrossRef Gao, Z.K., Li, T., Li, Z.H.: Long-distance measurement-device-independent quantum secure direct communication. EPL 125, 40004 (2019)ADSCrossRef
15.
Zurück zum Zitat Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65, 12–20 (2020)CrossRef Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65, 12–20 (2020)CrossRef
16.
Zurück zum Zitat Zhou, Z.R., Sheng, Y.B., Niu, P.H., Yin, L.G., Long, G.L.: Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63, 230362 (2020)ADSCrossRef Zhou, Z.R., Sheng, Y.B., Niu, P.H., Yin, L.G., Long, G.L.: Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63, 230362 (2020)ADSCrossRef
17.
Zurück zum Zitat He, R., Ma, J.G., Wu, J.W.: A quantum secure direct communication protocol using entangled beam pairs. EPL 127, 50006 (2019)ADSCrossRef He, R., Ma, J.G., Wu, J.W.: A quantum secure direct communication protocol using entangled beam pairs. EPL 127, 50006 (2019)ADSCrossRef
18.
Zurück zum Zitat Qin, H.W., Tang, W.K.S., Tso, R.: Establishing rational networking using the DL04 quantum secure direct communication protocol. Quantum Inf. Process. 17, 152 (2018)ADSMathSciNetMATHCrossRef Qin, H.W., Tang, W.K.S., Tso, R.: Establishing rational networking using the DL04 quantum secure direct communication protocol. Quantum Inf. Process. 17, 152 (2018)ADSMathSciNetMATHCrossRef
19.
20.
Zurück zum Zitat Wu, J.W., Lin, Z.S., Yin, L.G., Long, G.L.: Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quantum Eng. 1, e26 (2019)CrossRef Wu, J.W., Lin, Z.S., Yin, L.G., Long, G.L.: Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quantum Eng. 1, e26 (2019)CrossRef
21.
Zurück zum Zitat Collins, D., Gisin, N., Linden, N., Massar, S., Popescu, S.: Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002)ADSMathSciNetMATHCrossRef Collins, D., Gisin, N., Linden, N., Massar, S., Popescu, S.: Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002)ADSMathSciNetMATHCrossRef
22.
Zurück zum Zitat Vértesi, T., Pironio, S., Brunner, N.: Closing the detection loophole in Bell experiments using qudits. Phys. Rev. Lett. 104, 060401 (2010)ADSCrossRef Vértesi, T., Pironio, S., Brunner, N.: Closing the detection loophole in Bell experiments using qudits. Phys. Rev. Lett. 104, 060401 (2010)ADSCrossRef
23.
Zurück zum Zitat Dada, A.C., Leach, J., Buller, G.S., Padgett, M.J., Andersson, E.: Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys. 7, 677 (2011)CrossRef Dada, A.C., Leach, J., Buller, G.S., Padgett, M.J., Andersson, E.: Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys. 7, 677 (2011)CrossRef
24.
Zurück zum Zitat Ikuta, T., Takesue, H.: Enhanced violation of the Collins–Gisin–Linden–Massar–Popescu inequality with optimized time-bin-entangled ququarts. Phys. Rev. A 93, 022307 (2016)ADSCrossRef Ikuta, T., Takesue, H.: Enhanced violation of the Collins–Gisin–Linden–Massar–Popescu inequality with optimized time-bin-entangled ququarts. Phys. Rev. A 93, 022307 (2016)ADSCrossRef
25.
Zurück zum Zitat Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-Level systems. Phys. Rev. Lett. 88, 127902 (2002)ADSCrossRef Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-Level systems. Phys. Rev. Lett. 88, 127902 (2002)ADSCrossRef
26.
Zurück zum Zitat Sheridan, L., Scarani, V.: Security proof for quantum key distribution using qudit systems. Phys. Rev. A 82, 030301 (2010)ADSCrossRef Sheridan, L., Scarani, V.: Security proof for quantum key distribution using qudit systems. Phys. Rev. A 82, 030301 (2010)ADSCrossRef
27.
Zurück zum Zitat Mafu, M., Dudley, A., Goyal, S., Giovannini, D., McLaren, M., Padgett, M.J., Konrad, T., Petruccione, F., Lütkenhaus, N., Forbes, A.: Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys. Rev. A 88, 032305 (2013)ADSCrossRef Mafu, M., Dudley, A., Goyal, S., Giovannini, D., McLaren, M., Padgett, M.J., Konrad, T., Petruccione, F., Lütkenhaus, N., Forbes, A.: Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys. Rev. A 88, 032305 (2013)ADSCrossRef
28.
Zurück zum Zitat Chau, H., Wong, C., Wang, Q., Huang, T.: Qudit-based measurement-device-independent quantum key distribution using linear optics. arXiv: 1608.08329 (2016) Chau, H., Wong, C., Wang, Q., Huang, T.: Qudit-based measurement-device-independent quantum key distribution using linear optics. arXiv:​ 1608.​08329 (2016)
29.
Zurück zum Zitat Dellantonio, L., S\(\emptyset \)rensen, A., S\(\emptyset \)rensen, S., Bacco, D.: Highdimensional measurement-device-independent quantum key distribution on two-dimensional subspaces. Phys. Rev. A 98, 062301 (2018) Dellantonio, L., S\(\emptyset \)rensen, A., S\(\emptyset \)rensen, S., Bacco, D.: Highdimensional measurement-device-independent quantum key distribution on two-dimensional subspaces. Phys. Rev. A 98, 062301 (2018)
30.
Zurück zum Zitat Cui, Z.X., Zhong, W., Zhou, L., Sheng, Y.B.: Measurement-device-independent quantum key distribution with hyper-encoding. Sci. China Phys. Mech. Astron. 62, 110311 (2019)ADSCrossRef Cui, Z.X., Zhong, W., Zhou, L., Sheng, Y.B.: Measurement-device-independent quantum key distribution with hyper-encoding. Sci. China Phys. Mech. Astron. 62, 110311 (2019)ADSCrossRef
31.
Zurück zum Zitat Yan, Y.F., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon. Front. Phys. 16, 11501 (2021)ADSCrossRef Yan, Y.F., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon. Front. Phys. 16, 11501 (2021)ADSCrossRef
32.
Zurück zum Zitat Wang, X.L., Cai, X.D., Su, Z.E., et al.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516 (2015)ADSCrossRef Wang, X.L., Cai, X.D., Su, Z.E., et al.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516 (2015)ADSCrossRef
33.
Zurück zum Zitat Hu, X.M., Guo, Y., Liu, B.H., et al.: Beating the channel capacity limit for superdense coding with entangled ququarts. Sci. Adv. 4, eaat9304 (2018)ADSCrossRef Hu, X.M., Guo, Y., Liu, B.H., et al.: Beating the channel capacity limit for superdense coding with entangled ququarts. Sci. Adv. 4, eaat9304 (2018)ADSCrossRef
34.
Zurück zum Zitat Wu, F.Z., Yang, G.J., Wang, H.B., et al.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60, 120313 (2017)ADSCrossRef Wu, F.Z., Yang, G.J., Wang, H.B., et al.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60, 120313 (2017)ADSCrossRef
35.
Zurück zum Zitat Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. Astron. 61, 90312 (2018)ADSCrossRef Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. Astron. 61, 90312 (2018)ADSCrossRef
36.
Zurück zum Zitat Li, L.Y., Wang, T.J., Wang, C.: The analysis of high-capacity quantum secure direct communication using polarization and orbital angular momentum of photons. Mod. Phys. Lett. B 34, 2050017 (2020)ADSMathSciNetCrossRef Li, L.Y., Wang, T.J., Wang, C.: The analysis of high-capacity quantum secure direct communication using polarization and orbital angular momentum of photons. Mod. Phys. Lett. B 34, 2050017 (2020)ADSMathSciNetCrossRef
37.
Zurück zum Zitat Zou, Z.K., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement-device-independent quantum secure direct communication of multiple degrees of freedom of a single photon. EPL 131, 40005 (2020)ADSCrossRef Zou, Z.K., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement-device-independent quantum secure direct communication of multiple degrees of freedom of a single photon. EPL 131, 40005 (2020)ADSCrossRef
38.
Zurück zum Zitat Vallone, G., Ceccarelli, R., Martini, F.D., Mataloni, P.: Hyperentanglement of two photons in three degrees of freedom. Phys. Rev. A 79, 030301(R) (2009)ADSMathSciNetMATHCrossRef Vallone, G., Ceccarelli, R., Martini, F.D., Mataloni, P.: Hyperentanglement of two photons in three degrees of freedom. Phys. Rev. A 79, 030301(R) (2009)ADSMathSciNetMATHCrossRef
39.
Zurück zum Zitat Vallone, G., Donati, G., Ceccarelli, R., Mataloni, P.: Six-qubit two-photon hyperentangled cluster states: characterization and application to quantum computation. Phys. Rev. A 81, 052301 (2010)ADSCrossRef Vallone, G., Donati, G., Ceccarelli, R., Mataloni, P.: Six-qubit two-photon hyperentangled cluster states: characterization and application to quantum computation. Phys. Rev. A 81, 052301 (2010)ADSCrossRef
40.
Zurück zum Zitat Ralph, T.C., Lund, A.P.: Quantum communication measurement and computing. In: lvovsky, A. (ed.) Proceedings of the 9th International Conference, pp. 155-160. AIP, New York (2009) Ralph, T.C., Lund, A.P.: Quantum communication measurement and computing. In: lvovsky, A. (ed.) Proceedings of the 9th International Conference, pp. 155-160. AIP, New York (2009)
41.
Zurück zum Zitat Gisin, N., Pironio, S., Sangouard, N.: Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. Phys. Rev. Lett. 105, 070501 (2010)ADSCrossRef Gisin, N., Pironio, S., Sangouard, N.: Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. Phys. Rev. Lett. 105, 070501 (2010)ADSCrossRef
42.
Zurück zum Zitat Curty, M., Moroder, T.: Heralded-qubit amplifiers for practical device-independent quantum key distribution. Phys. Rev. A 84, 010304 (2011)ADSCrossRef Curty, M., Moroder, T.: Heralded-qubit amplifiers for practical device-independent quantum key distribution. Phys. Rev. A 84, 010304 (2011)ADSCrossRef
43.
Zurück zum Zitat Pitkanen, D., Ma, X., Wickert, R., Loock, P.V., Lütkenhaus, N.: Effcient heralding of photonic qubits with applications to device-independent quantum key distribution. Phys. Rev. A 84, 022325 (2011)ADSCrossRef Pitkanen, D., Ma, X., Wickert, R., Loock, P.V., Lütkenhaus, N.: Effcient heralding of photonic qubits with applications to device-independent quantum key distribution. Phys. Rev. A 84, 022325 (2011)ADSCrossRef
44.
Zurück zum Zitat Xiang, G.Y., Ralph, T.C., Lund, A.P., Walk, N., Pryde, G.J.: Heralded noiseless linear amplification and distillation of entanglement. Nat. Photon. 4, 316 (2010)CrossRef Xiang, G.Y., Ralph, T.C., Lund, A.P., Walk, N., Pryde, G.J.: Heralded noiseless linear amplification and distillation of entanglement. Nat. Photon. 4, 316 (2010)CrossRef
45.
Zurück zum Zitat Zhang, S.L., Yang, S., Zou, X.B., Shi, B.S., Guo, G.C.: Protecting single-photon entangled state from photon loss with noiseless linear amplication. Phys. Rev. A 86, 034302 (2012)ADSCrossRef Zhang, S.L., Yang, S., Zou, X.B., Shi, B.S., Guo, G.C.: Protecting single-photon entangled state from photon loss with noiseless linear amplication. Phys. Rev. A 86, 034302 (2012)ADSCrossRef
46.
Zurück zum Zitat Osorio, C.I., Bruno, N., Sangouard, N., Zbinden, H., Gisin, N., Thew, R.T.: Heralded photon amplification for quantum communication. Phys. Rev. A 86, 023815 (2012)ADSCrossRef Osorio, C.I., Bruno, N., Sangouard, N., Zbinden, H., Gisin, N., Thew, R.T.: Heralded photon amplification for quantum communication. Phys. Rev. A 86, 023815 (2012)ADSCrossRef
47.
Zurück zum Zitat Meyer-Scott, E., Bula, M., Bartkiewicz, K., C̆ernoch, A., Soubusta, J., Jennewein, T., Lemr, K.: Entanglement-based linear-optical qubit amplifier. Phys. Rev. A 88, 012327 (2013) Meyer-Scott, E., Bula, M., Bartkiewicz, K., C̆ernoch, A., Soubusta, J., Jennewein, T., Lemr, K.: Entanglement-based linear-optical qubit amplifier. Phys. Rev. A 88, 012327 (2013)
48.
Zurück zum Zitat Kocsis, S., Xiang, G.Y., Ralph, T.C., Pryde, G.J.: Heralded noiseless amplification of a photon polarization qubit. Nat. Phys. 9, 23–28 (2013)CrossRef Kocsis, S., Xiang, G.Y., Ralph, T.C., Pryde, G.J.: Heralded noiseless amplification of a photon polarization qubit. Nat. Phys. 9, 23–28 (2013)CrossRef
49.
Zurück zum Zitat Wang, T.J., Cao, C., Wang, C.: Linear-optical implementation of hyperdistillation from photon loss. Phys. Rev. A 89, 052303 (2014)ADSCrossRef Wang, T.J., Cao, C., Wang, C.: Linear-optical implementation of hyperdistillation from photon loss. Phys. Rev. A 89, 052303 (2014)ADSCrossRef
50.
Zurück zum Zitat Zhou, L., Sheng, Y.B.: Recyclable amplification protocol for the single-photon entangled state. Laser Phys. Lett. 12, 045203 (2015)ADSCrossRef Zhou, L., Sheng, Y.B.: Recyclable amplification protocol for the single-photon entangled state. Laser Phys. Lett. 12, 045203 (2015)ADSCrossRef
51.
Zurück zum Zitat Bruno, N., Pini, V., Martin, A., et al.: Heralded amplification of photonic qubits. Opt. Express 24, 125–133 (2016)ADSCrossRef Bruno, N., Pini, V., Martin, A., et al.: Heralded amplification of photonic qubits. Opt. Express 24, 125–133 (2016)ADSCrossRef
52.
Zurück zum Zitat Monteiro, F., Verbanis, E., Vivoli Caprara, V., Martin, A., Gisin, N., Zbinden, H., Thew, R.T.: Heralded amplification of path entangled quantum states. Quantum. Sci. Technol. 2, 024008 (2017)ADSCrossRef Monteiro, F., Verbanis, E., Vivoli Caprara, V., Martin, A., Gisin, N., Zbinden, H., Thew, R.T.: Heralded amplification of path entangled quantum states. Quantum. Sci. Technol. 2, 024008 (2017)ADSCrossRef
53.
Zurück zum Zitat Zhou, L., Chen, L.Q., Zhong, W., Sheng, Y.B.: Recyclable amplification for single-photon entanglement from photon loss and decoherence. Laser Phys. Lett. 15, 015201 (2018)ADSCrossRef Zhou, L., Chen, L.Q., Zhong, W., Sheng, Y.B.: Recyclable amplification for single-photon entanglement from photon loss and decoherence. Laser Phys. Lett. 15, 015201 (2018)ADSCrossRef
54.
Zurück zum Zitat Wang, D.D., Jin, Y.Y., Qin, S.X., Zu, H., Zhou, L., Zhong, W., Sheng, Y.B.: Heralded noiseless amplification for single-photon entangled state with polarization feature. Quantum Inf. Process. 17, 56 (2018)ADSMathSciNetMATHCrossRef Wang, D.D., Jin, Y.Y., Qin, S.X., Zu, H., Zhou, L., Zhong, W., Sheng, Y.B.: Heralded noiseless amplification for single-photon entangled state with polarization feature. Quantum Inf. Process. 17, 56 (2018)ADSMathSciNetMATHCrossRef
55.
Zurück zum Zitat Chen, L.Q., Sheng, Y.B., Zhou, L.: Noiseless linear amplification for the single-photon entanglement of arbitrary polarization-time-bin qudit. Chin. Phys. B 28, 010302 (2019)ADSCrossRef Chen, L.Q., Sheng, Y.B., Zhou, L.: Noiseless linear amplification for the single-photon entanglement of arbitrary polarization-time-bin qudit. Chin. Phys. B 28, 010302 (2019)ADSCrossRef
56.
Zurück zum Zitat Yang, G., Zhang, Y.S., Yang, Z.R., Zhou, L., Sheng, Y.B.: Linear-optical heralded amplification protocol for two-photon spatial-mode-polarization hyperentangled state. Quantum Inf. Process. 18, 317 (2019)ADSMathSciNetCrossRef Yang, G., Zhang, Y.S., Yang, Z.R., Zhou, L., Sheng, Y.B.: Linear-optical heralded amplification protocol for two-photon spatial-mode-polarization hyperentangled state. Quantum Inf. Process. 18, 317 (2019)ADSMathSciNetCrossRef
57.
Zurück zum Zitat Tsujimoto, Y., You, C., Wakui, K. et al.: Heralded amplification of nonlocality via entanglement swapping for long-distance device-independent quantum key distribution. New J. Phys. 22, 023008 (2020) Tsujimoto, Y., You, C., Wakui, K. et al.: Heralded amplification of nonlocality via entanglement swapping for long-distance device-independent quantum key distribution. New J. Phys. 22, 023008 (2020)
58.
Zurück zum Zitat Winne, M., Hosseinideha, N., Ralph, T.C.: Generalised quantum scissors for noiseless linear amplification.Phys. Rev. A 102, 063715 (2020) Winne, M., Hosseinideha, N., Ralph, T.C.: Generalised quantum scissors for noiseless linear amplification.Phys. Rev. A 102, 063715 (2020)
59.
Zurück zum Zitat Li, Y.P., Zhang, J., Xu, B.W., Zhou, L., Zhong, W., Sheng, Y.B.: Entanglement-assisted noiseless linear amplification for arbitrary two-photon polarization-time-bin hyperentanglement. Quantum Inf. Process. 19, 261 (2020)ADSMathSciNetCrossRef Li, Y.P., Zhang, J., Xu, B.W., Zhou, L., Zhong, W., Sheng, Y.B.: Entanglement-assisted noiseless linear amplification for arbitrary two-photon polarization-time-bin hyperentanglement. Quantum Inf. Process. 19, 261 (2020)ADSMathSciNetCrossRef
60.
Zurück zum Zitat Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)ADSCrossRef Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)ADSCrossRef
61.
Zurück zum Zitat White, A.G., James, D.F.V., Eberhard, P.H., Kwiat, P.G.: Nonmaximally entangled states: production, characterization, and utilization. Phys. Rev. A 83, 03103 (2000) White, A.G., James, D.F.V., Eberhard, P.H., Kwiat, P.G.: Nonmaximally entangled states: production, characterization, and utilization. Phys. Rev. A 83, 03103 (2000)
62.
Zurück zum Zitat Pittman, T., Jacobs, B., Franson, J.: Heralding single photons from pulsed parametric down-conversion. Opt. Commun. 246, 545–550 (2005)ADSCrossRef Pittman, T., Jacobs, B., Franson, J.: Heralding single photons from pulsed parametric down-conversion. Opt. Commun. 246, 545–550 (2005)ADSCrossRef
63.
Zurück zum Zitat Zhang, W.J., You, L.X., Li, H., Huang, J., Lv, C.L., Zhang, L., Liu, X.Y., Wu, J.J., Wang, Z., Xie, X.M.: NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature. Sci. China Phys. Mech. Astron. 60, 120314 (2017)CrossRef Zhang, W.J., You, L.X., Li, H., Huang, J., Lv, C.L., Zhang, L., Liu, X.Y., Wu, J.J., Wang, Z., Xie, X.M.: NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature. Sci. China Phys. Mech. Astron. 60, 120314 (2017)CrossRef
64.
Zurück zum Zitat Lu, Y., Li, Q., Westly, D.A., Moille, G., Singh, A., Anant, V., Srinivasan, K.: Chip-integrated visible-telecom entangled photon pair source for quantum communication. Nat. Phys. 15, 373 (2019)CrossRef Lu, Y., Li, Q., Westly, D.A., Moille, G., Singh, A., Anant, V., Srinivasan, K.: Chip-integrated visible-telecom entangled photon pair source for quantum communication. Nat. Phys. 15, 373 (2019)CrossRef
Metadaten
Titel
Feasible noiseless linear amplification for single-photon qudit and two-photon hyperentanglement encoded in three degrees of freedom
verfasst von
Bao-Wen Xu
Jie Zhang
Lan Zhou
Wei Zhong
Yu-Bo Sheng
Publikationsdatum
01.05.2021
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 5/2021
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-021-03096-y

Weitere Artikel der Ausgabe 5/2021

Quantum Information Processing 5/2021 Zur Ausgabe

Neuer Inhalt