Skip to main content
Erschienen in:

03.06.2024

Feature fusion federated learning for privacy-aware indoor localization

verfasst von: Omid Tasbaz, Bahar Farahani, Vahideh Moghtadaiee

Erschienen in: Peer-to-Peer Networking and Applications | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Der Artikel stellt eine bahnbrechende Methode zur Lokalisierung von Innenräumen vor, die die Funktionen Empfangene Signalstärke (RSS) und Kanalzustandsinformation (CSI) innerhalb eines föderierten Lernrahmens integriert. Dieser Ansatz zielt darauf ab, die Genauigkeit der Positionierung in Innenräumen zu verbessern und gleichzeitig die Privatsphäre der Nutzer zu schützen. Die Autoren sprechen die Beschränkungen bestehender Ortungssysteme in Innenräumen an, die häufig auf weniger zuverlässigen RSS-Daten und zentralisierter Datenverarbeitung beruhen. Durch die Verschmelzung von RSS- und CSI-Funktionen nutzt die vorgeschlagene Methode die Stärken beider Datentypen, um die Standorteinschätzung zu verbessern. Darüber hinaus sorgt der Einsatz von föderiertem Lernen dafür, dass sensible Nutzerdaten dezentralisiert bleiben, was Bedenken hinsichtlich der Privatsphäre abmildert. Der Artikel untersucht auch die Anwendbarkeit dieser Methode sowohl für orts- als auch zonenbasierte Positionierungsstrategien in Innenräumen und zeigt ihre Vielseitigkeit und Effektivität in verschiedenen Szenarien auf. Experimentelle Ergebnisse zeigen, dass die vorgeschlagene Feature-Fusion-föderierte Lernmethode traditionelle Ansätze deutlich übertrifft und eine höhere Genauigkeit und einen besseren Schutz der Privatsphäre erreicht. Dieser innovative Ansatz ist vielversprechend für verschiedene Anwendungen, darunter intelligente Städte, Gesundheitswesen und militärische Operationen, bei denen eine präzise und private Lokalisierung in Innenräumen von entscheidender Bedeutung ist.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang L, Ding E, Hu Y, Liu Y (2019) A novel csi-based fingerprinting for localization with a single ap. EURASIP J Wirel Commun Netw 1:1–14 Zhang L, Ding E, Hu Y, Liu Y (2019) A novel csi-based fingerprinting for localization with a single ap. EURASIP J Wirel Commun Netw 1:1–14
2.
Zurück zum Zitat Fathalizadeh A, Moghtadaiee V, Alishahi M (2022) On the privacy protection of indoor location dataset using anonymization. Comput Secur 117:102665CrossRef Fathalizadeh A, Moghtadaiee V, Alishahi M (2022) On the privacy protection of indoor location dataset using anonymization. Comput Secur 117:102665CrossRef
5.
Zurück zum Zitat Yang Z, Järvinen K (2018) The death and rebirth of privacy-preserving wifi fingerprint localization with paillier encryption. In: IEEE Conference on Computer Communications (INFOCOM), pp 1223–1231 Yang Z, Järvinen K (2018) The death and rebirth of privacy-preserving wifi fingerprint localization with paillier encryption. In: IEEE Conference on Computer Communications (INFOCOM), pp 1223–1231
6.
Zurück zum Zitat Zakhary S, Benslimane A (2018) On location-privacy in opportunistic mobile networks, a survey. J Netw Comput Appl 103:157–170CrossRef Zakhary S, Benslimane A (2018) On location-privacy in opportunistic mobile networks, a survey. J Netw Comput Appl 103:157–170CrossRef
7.
Zurück zum Zitat Ciftler BS, Albaseer A, Lasla N, Abdallah M (2020) Federated learning for rss fingerprint-based localization: A privacy-preserving crowdsourcing method. In: 2020 International Wireless Communications and Mobile Computing (IWCMC), pp 2112–2117 Ciftler BS, Albaseer A, Lasla N, Abdallah M (2020) Federated learning for rss fingerprint-based localization: A privacy-preserving crowdsourcing method. In: 2020 International Wireless Communications and Mobile Computing (IWCMC), pp 2112–2117
8.
Zurück zum Zitat Farahani B, Monsefi AK (2023) Smart and collaborative industrial iot: A federated learning and data space approach. Digit Commun Netw 9(2):436–447CrossRef Farahani B, Monsefi AK (2023) Smart and collaborative industrial iot: A federated learning and data space approach. Digit Commun Netw 9(2):436–447CrossRef
9.
Zurück zum Zitat Wang X, Gao L, Mao S, Pandey S (2015) Deepfi: Deep learning for indoor fingerprinting using channel state information. In: 2015 IEEE Wireless Communications and Networking Conference (WCNC), pp 1666–1671 Wang X, Gao L, Mao S, Pandey S (2015) Deepfi: Deep learning for indoor fingerprinting using channel state information. In: 2015 IEEE Wireless Communications and Networking Conference (WCNC), pp 1666–1671
10.
Zurück zum Zitat Zhu X, Qu W, Qiu T, Zhao L, Atiquzzaman M, Wu DO (2020) Indoor intelligent fingerprint-based localization: Principles, approaches and challenges. IEEE Commun Surv Tutor 22(4):2634–2657CrossRef Zhu X, Qu W, Qiu T, Zhao L, Atiquzzaman M, Wu DO (2020) Indoor intelligent fingerprint-based localization: Principles, approaches and challenges. IEEE Commun Surv Tutor 22(4):2634–2657CrossRef
11.
Zurück zum Zitat Chapre Y, Ignjatovic A, Seneviratne A, Jha S (2014) Csi-mimo: Indoor wi-fi fingerprinting system. In: 39th Annual IEEE Conference on Local Computer Networks, pp 202–209 Chapre Y, Ignjatovic A, Seneviratne A, Jha S (2014) Csi-mimo: Indoor wi-fi fingerprinting system. In: 39th Annual IEEE Conference on Local Computer Networks, pp 202–209
12.
Zurück zum Zitat Wang X, Wang X, Mao S (2017) Resloc: Deep residual sharing learning for indoor localization with csi tensors. In: 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp 1–6 Wang X, Wang X, Mao S (2017) Resloc: Deep residual sharing learning for indoor localization with csi tensors. In: 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp 1–6
13.
Zurück zum Zitat Zhu X, Qiu T, Qu W, Zhou X, Atiquzzaman M, Wu DO (2021) Bls-location: A wireless fingerprint localization algorithm based on broad learning. IEEE Trans Mob Comput 22(1):115–128CrossRef Zhu X, Qiu T, Qu W, Zhou X, Atiquzzaman M, Wu DO (2021) Bls-location: A wireless fingerprint localization algorithm based on broad learning. IEEE Trans Mob Comput 22(1):115–128CrossRef
14.
Zurück zum Zitat Zhou C, Liu J, Sheng M, Li J (2020) Hybrid rss/csi fingerprint aided indoor localization: a deep learning based approach. In: GLOBECOM 2020-2020 IEEE Global Communications Conference, pp 1–6 Zhou C, Liu J, Sheng M, Li J (2020) Hybrid rss/csi fingerprint aided indoor localization: a deep learning based approach. In: GLOBECOM 2020-2020 IEEE Global Communications Conference, pp 1–6
15.
Zurück zum Zitat Li Q, Liao X, Liu M, Valaee S (2021) Indoor localization based on csi fingerprint by siamese convolution neural network. IEEE Trans Veh Technol 70(11):12168–12173CrossRef Li Q, Liao X, Liu M, Valaee S (2021) Indoor localization based on csi fingerprint by siamese convolution neural network. IEEE Trans Veh Technol 70(11):12168–12173CrossRef
16.
Zurück zum Zitat Sánchez-Rodríguez D, Quintana-Suárez MA, Alonso-González I, Ley-Bosch C, Sánchez-Medina JJ (2020) Fusion of channel state information and received signal strength for indoor localization using a single access point. Remote Sens 12(12):1995CrossRef Sánchez-Rodríguez D, Quintana-Suárez MA, Alonso-González I, Ley-Bosch C, Sánchez-Medina JJ (2020) Fusion of channel state information and received signal strength for indoor localization using a single access point. Remote Sens 12(12):1995CrossRef
17.
Zurück zum Zitat Wang X, Gao L, Mao S (2017) Biloc: Bi-modal deep learning for indoor localization with commodity 5ghz wifi. IEEE Access 5:4209–4220CrossRef Wang X, Gao L, Mao S (2017) Biloc: Bi-modal deep learning for indoor localization with commodity 5ghz wifi. IEEE Access 5:4209–4220CrossRef
18.
Zurück zum Zitat Chen H, Zhang Y, Li W, Tao X, Zhang P (2017) Confi: Convolutional neural networks based indoor wi-fi localization using channel state information. IEEE Access 5:18066–18074CrossRef Chen H, Zhang Y, Li W, Tao X, Zhang P (2017) Confi: Convolutional neural networks based indoor wi-fi localization using channel state information. IEEE Access 5:18066–18074CrossRef
19.
Zurück zum Zitat Hsieh C-H, Chen J-Y, Nien B-H (2019) Deep learning-based indoor localization using received signal strength and channel state information. IEEE Access 7:33256–33267CrossRef Hsieh C-H, Chen J-Y, Nien B-H (2019) Deep learning-based indoor localization using received signal strength and channel state information. IEEE Access 7:33256–33267CrossRef
20.
Zurück zum Zitat Li L (2021) Simulating federated learning for smartphone based indoor localisation. B.S. thesis, University of Twente Li L (2021) Simulating federated learning for smartphone based indoor localisation. B.S. thesis, University of Twente
21.
Zurück zum Zitat Liu Y, Li H, Xiao J, Jin H (2019) Floc: Fingerprint-based indoor localization system under a federated learning updating framework. In: 2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN), pp 113–118 Liu Y, Li H, Xiao J, Jin H (2019) Floc: Fingerprint-based indoor localization system under a federated learning updating framework. In: 2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN), pp 113–118
22.
Zurück zum Zitat Li W, Zhang C, Tanaka Y (2020) Pseudo label-driven federated learning-based decentralized indoor localization via mobile crowdsourcing. IEEE Sens J 20(19):11556–11565CrossRef Li W, Zhang C, Tanaka Y (2020) Pseudo label-driven federated learning-based decentralized indoor localization via mobile crowdsourcing. IEEE Sens J 20(19):11556–11565CrossRef
23.
Zurück zum Zitat Wu P, Imbiriba T, Park J, Kim S, Closas P (2021) Personalized federated learning over non-iid data for indoor localization. In: 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp 421–425 Wu P, Imbiriba T, Park J, Kim S, Closas P (2021) Personalized federated learning over non-iid data for indoor localization. In: 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp 421–425
24.
Zurück zum Zitat Wu Z, Wu X, Long X, Long Y (2021) A privacy-preserved online personalized federated learning framework for indoor localization. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp 2834–2839 Wu Z, Wu X, Long X, Long Y (2021) A privacy-preserved online personalized federated learning framework for indoor localization. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp 2834–2839
25.
Zurück zum Zitat Wu Z, Wu X, Long Y (2022) Prediction based semi-supervised online personalized federated learning for indoor localization. IEEE Sens J 22(11):10640–10654CrossRef Wu Z, Wu X, Long Y (2022) Prediction based semi-supervised online personalized federated learning for indoor localization. IEEE Sens J 22(11):10640–10654CrossRef
26.
Zurück zum Zitat Cheng X, Ma C, Li J, Song H, Shu F, Wang J (2022) Federated learning-based localization with heterogeneous fingerprint database. IEEE Wirel Commun Lett 11(7):1364–1368CrossRef Cheng X, Ma C, Li J, Song H, Shu F, Wang J (2022) Federated learning-based localization with heterogeneous fingerprint database. IEEE Wirel Commun Lett 11(7):1364–1368CrossRef
27.
Zurück zum Zitat Gao B, Yang F, Cui N, Xiong K, Lu Y, Wang Y (2022) A federated learning framework for fingerprinting-based indoor localization in multibuilding and multifloor environments. IEEE Internet Things J 10(3):2615–2629CrossRef Gao B, Yang F, Cui N, Xiong K, Lu Y, Wang Y (2022) A federated learning framework for fingerprinting-based indoor localization in multibuilding and multifloor environments. IEEE Internet Things J 10(3):2615–2629CrossRef
28.
Zurück zum Zitat Kumar R, Popli R, Khullar V, Kansal I, Sharma A (2023) Confidentiality preserved federated learning for indoor localization using wi-fi fingerprinting. Buildings 13(8):2048CrossRef Kumar R, Popli R, Khullar V, Kansal I, Sharma A (2023) Confidentiality preserved federated learning for indoor localization using wi-fi fingerprinting. Buildings 13(8):2048CrossRef
29.
Zurück zum Zitat Kim KS, Lee S, Huang K (2018) A scalable deep neural network architecture for multi-building and multi-floor indoor localization based on wi-fi fingerprinting. Big Data Analytics 3:1–17CrossRef Kim KS, Lee S, Huang K (2018) A scalable deep neural network architecture for multi-building and multi-floor indoor localization based on wi-fi fingerprinting. Big Data Analytics 3:1–17CrossRef
30.
Zurück zum Zitat Gufran D, Pasricha S (2023) Fedhil: Heterogeneity resilient federated learning for robust indoor localization with mobile devices. ACM Trans Embed Comput Syst 22(5s):1–24CrossRef Gufran D, Pasricha S (2023) Fedhil: Heterogeneity resilient federated learning for robust indoor localization with mobile devices. ACM Trans Embed Comput Syst 22(5s):1–24CrossRef
31.
Zurück zum Zitat Shi J, Zhang H, Wang S, Ge B, Mao S, Lin Y (2022) Fedrfid: Federated learning for radio frequency fingerprint identification of wifi signals. In: GLOBECOM 2022-2022 IEEE Global Communications Conference. pp 154–159 Shi J, Zhang H, Wang S, Ge B, Mao S, Lin Y (2022) Fedrfid: Federated learning for radio frequency fingerprint identification of wifi signals. In: GLOBECOM 2022-2022 IEEE Global Communications Conference. pp 154–159
32.
Zurück zum Zitat Nagia N, Rahman MT, Valaee S (2022) Federated learning for wifi fingerprinting. In: ICC 2022-IEEE International Conference on Communications, pp 4968–4973 Nagia N, Rahman MT, Valaee S (2022) Federated learning for wifi fingerprinting. In: ICC 2022-IEEE International Conference on Communications, pp 4968–4973
33.
Zurück zum Zitat Guo J, Ho IW-H, Hou Y, Li Z (2023) Fedpos: A federated transfer learning framework for csi-based wi-fi indoor positioning. IEEE Syst J 17(3):4579–4590CrossRef Guo J, Ho IW-H, Hou Y, Li Z (2023) Fedpos: A federated transfer learning framework for csi-based wi-fi indoor positioning. IEEE Syst J 17(3):4579–4590CrossRef
34.
Zurück zum Zitat Bahl P, Padmanabhan VN (2000) Radar: An in-building rf-based user location and tracking system. In: Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No. 00CH37064) 2:775–784 Bahl P, Padmanabhan VN (2000) Radar: An in-building rf-based user location and tracking system. In: Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No. 00CH37064) 2:775–784
35.
Zurück zum Zitat Arnold M, Schaich F (2021) Indoor positioning systems: Smart fusion of a variety of sensor readings. In: 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp 1–5 Arnold M, Schaich F (2021) Indoor positioning systems: Smart fusion of a variety of sensor readings. In: 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp 1–5
37.
Zurück zum Zitat Cheng X, Liu T, Shu F, Ma C, Li J, Wang J (2022) Providing location information at edge networks: a federated learning-based approach. IEEE Netw 36(5):114–120CrossRef Cheng X, Liu T, Shu F, Ma C, Li J, Wang J (2022) Providing location information at edge networks: a federated learning-based approach. IEEE Netw 36(5):114–120CrossRef
38.
Zurück zum Zitat Wang X, Mao S (2019) Deep learning for indoor localization based on bi-modal csi data. Appl Mach Learn Wirel Commun 81:343 Wang X, Mao S (2019) Deep learning for indoor localization based on bi-modal csi data. Appl Mach Learn Wirel Commun 81:343
39.
Zurück zum Zitat Liu W, Cheng Q, Deng Z, Chen H, Fu X, Zheng X, Zheng S, Chen C, Wang S (2019) Survey on csi-based indoor positioning systems and recent advances. In: 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp 1–8. IEEE Liu W, Cheng Q, Deng Z, Chen H, Fu X, Zheng X, Zheng S, Chen C, Wang S (2019) Survey on csi-based indoor positioning systems and recent advances. In: 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp 1–8. IEEE
40.
Zurück zum Zitat Sauter M (2010) From GSM to LTE: An Introduction to Mobile Networks and Mobile Broadband. Books. Wiley, United States, Wiley Online LibraryCrossRef Sauter M (2010) From GSM to LTE: An Introduction to Mobile Networks and Mobile Broadband. Books. Wiley, United States, Wiley Online LibraryCrossRef
41.
Zurück zum Zitat Nessa A, Adhikari B, Hussain F, Fernando XN (2020) A survey of machine learning for indoor positioning. IEEE Access 8:214945–214965CrossRef Nessa A, Adhikari B, Hussain F, Fernando XN (2020) A survey of machine learning for indoor positioning. IEEE Access 8:214945–214965CrossRef
42.
Zurück zum Zitat McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA (2017) Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp 1273–1282 McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA (2017) Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp 1273–1282
43.
Zurück zum Zitat Huang S-C, Pareek A, Seyyedi S, Banerjee I, Lungren MP (2020) Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. NPJ Digit Med 3(1):136CrossRef Huang S-C, Pareek A, Seyyedi S, Banerjee I, Lungren MP (2020) Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. NPJ Digit Med 3(1):136CrossRef
44.
Zurück zum Zitat Pawłowski M, Wróblewska A, Sysko-Romańczuk S (2023) Effective techniques for multimodal data fusion: A comparative analysis. Sensors 23(5):2381CrossRef Pawłowski M, Wróblewska A, Sysko-Romańczuk S (2023) Effective techniques for multimodal data fusion: A comparative analysis. Sensors 23(5):2381CrossRef
45.
Zurück zum Zitat Tasbaz O, Moghtadaiee V, Farahani B (2022) Zone-based federated learning in indoor positioning. In: 2022 12th International Conference on Computer and Knowledge Engineering (ICCKE), pp 163–168 Tasbaz O, Moghtadaiee V, Farahani B (2022) Zone-based federated learning in indoor positioning. In: 2022 12th International Conference on Computer and Knowledge Engineering (ICCKE), pp 163–168
46.
Zurück zum Zitat Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT press, Cambridge Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT press, Cambridge
Metadaten
Titel
Feature fusion federated learning for privacy-aware indoor localization
verfasst von
Omid Tasbaz
Bahar Farahani
Vahideh Moghtadaiee
Publikationsdatum
03.06.2024
Verlag
Springer US
Erschienen in
Peer-to-Peer Networking and Applications / Ausgabe 5/2024
Print ISSN: 1936-6442
Elektronische ISSN: 1936-6450
DOI
https://doi.org/10.1007/s12083-024-01736-5