Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

12.02.2020 | Methodologies and Application

Feature selection based on hybridization of genetic algorithm and competitive swarm optimizer

Zeitschrift:
Soft Computing
Autoren:
Ye Ding, Kui Zhou, Weihong Bi
Wichtige Hinweise
Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Feature selection is one of the hottest machine learning topics in recent years. The main purposes of it are to simplify the original model, improve the readability of the model, and prevent over-fitting by searching for a suitable subset of features. There are many methods for this problem, including evolutionary algorithms and particle swarm optimization. Among them, the competitive swarm optimizer is a new optimization algorithm proposed in recent years, which is based on particle swarm optimization algorithm, and has achieved good results in high-dimensional feature selection problems, but it also has the problems of high computation time cost and easily being premature. Aiming at these problems, this paper proposes to add the crossover operator and mutation operator in the genetic algorithm to the competitive swarm optimization, so as to improve the generation speed of new individuals in the algorithm and prevent premature population. After testing on UC Irvine Machine Learning Repository, the new algorithm not only improves the computational efficiency, but also avoids the problem that the competitive swarm optimization algorithm is easy to fall into the local optimum, which greatly improves the calculation effect.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise