Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.09.2014 | Original Article | Ausgabe 3-4/2014

Neural Computing and Applications 3-4/2014

Feature selection using swarm-based relative reduct technique for fetal heart rate

Zeitschrift:
Neural Computing and Applications > Ausgabe 3-4/2014
Autoren:
H. Hannah Inbarani, P. K. Nizar Banu, Ahmad Taher Azar

Abstract

Fetal heart rate helps in diagnosing the well-being and also the distress of fetal. Cardiotocograph (CTG) monitors the fetal heart activity to estimate the fetal tachogram based on the evaluation of ultrasound pulses reflected from the fetal heart. It consists in a simultaneous recording and analysis of fetal heart rate signal, uterine contraction activity and fetal movements. Generally CTG comprises more number of features. Feature selection also called as attribute selection is a process of selecting a subset of highly relevant features which is responsible for future analysis. In general, medical datasets require more number of features to predict an activity. This paper aims at identifying the relevant and ignores the redundant features, consequently reducing the number of features to assess the fetal heart rate. The features are selected by using unsupervised particle swarm optimization (PSO)-based relative reduct (US-PSO-RR) and compared with unsupervised relative reduct and principal component analysis. The proposed method is then tested by applying various classification algorithms such as single decision tree, multilayer perceptron neural network, probabilistic neural network and random forest for maximum number of classes and clustering accuracies like root mean square error, mean absolute error, Davies–Bouldin index and Xie–Beni index for minimum number of classes. Empirical results show that the US-PSO-RR feature selection technique outperforms the existing methods by producing sensitivity of 72.72 %, specificity of 97.66 %, F-measure of 74.19 % which is remarkable, and clustering results demonstrate error rate produced by US-PSO-RR is less as well.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3-4/2014

Neural Computing and Applications 3-4/2014 Zur Ausgabe

Premium Partner

    Bildnachweise