Skip to main content
Erschienen in:

28.09.2022

Features of Steel Structure Formation in Areas of High-Speed Laser Hardening from Liquid State

verfasst von: G. I. Brover, E. E. Shcherbakova

Erschienen in: Metallurgist | Ausgabe 5-6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Features of structure organization during pulsed laser melting of steel surface layers are studied. Based on analyzing crystallization process rate kinetics it is established that temperature gradients and thermal stresses developing in irradiated metal areas during melting contribute to convective mixing of liquid at a rate of 103 cm/sec, and also, despite an extremely short laser pulse time (10–3 sec) they contribute to partial or complete dissolution of the original structure carbides. As a result, the chemical composition of melted metal changes, martensitic transformation points are lowered and a significant amount of textured metastable residual austenite (40–60%) is fixed that has a very fine structure (dendrite cross-section 5–9 nm). This has a favorable effect on irradiated material surface layer quality and mechanical properties. It is established by experiment that with a change in laser processing regime it becomes possible to achieve a wide range of cooling rates during crystallization, i.e., to control the degree of carbide dissolution, structural characteristics, and melted metal area properties. It is demonstrated that in order to achieve the maximum possible degree of hardening for irradiated steels having different chemical composition, it is necessary to dissolve 30–60% of carbides in the initial metal. As a result of this after laser irradiation material heat resistance increases by 50–100°C, and wear resistance increases by a factor of 2–4.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. M. Gureev and S. V. Yamshchikov, Bases of Laser Physics and Material laser Treatment [in Russian], Izd. SGU, Samara (2001). D. M. Gureev and S. V. Yamshchikov, Bases of Laser Physics and Material laser Treatment [in Russian], Izd. SGU, Samara (2001).
2.
Zurück zum Zitat A. G. Grigor’yants, I. N. Shiganov, and A. I. Misyurov, Laser Treatment production processes [in Russian], Izd. MGTU im Baumana, Moscow (2006). A. G. Grigor’yants, I. N. Shiganov, and A. I. Misyurov, Laser Treatment production processes [in Russian], Izd. MGTU im Baumana, Moscow (2006).
3.
Zurück zum Zitat Yu. D. Klebanov and S. N. Grigor’ev, Physical Bases of using Concentrated Energy Flows in Material Treatment Technology [in Russian] Izd. MGTU Stankin, Moscow (2005). Yu. D. Klebanov and S. N. Grigor’ev, Physical Bases of using Concentrated Energy Flows in Material Treatment Technology [in Russian] Izd. MGTU Stankin, Moscow (2005).
4.
Zurück zum Zitat X. Li and Y. Guan, “Theoretical fundamentals of short pulse laser–metal interaction: A review,” Nanotechnology and Precision Engineering, No. 3, 105–125 (2020). X. Li and Y. Guan, “Theoretical fundamentals of short pulse laser–metal interaction: A review,” Nanotechnology and Precision Engineering, No. 3, 105–125 (2020).
5.
Zurück zum Zitat S. Roy, J. Zhao, P. Shrotriya, and S. Sundararajan, “Effect of laser treatment parameters on surface modification and tribological behavior of AISI 8620 steel,” Tribology Inter., 112, 94–102 (2017).CrossRef S. Roy, J. Zhao, P. Shrotriya, and S. Sundararajan, “Effect of laser treatment parameters on surface modification and tribological behavior of AISI 8620 steel,” Tribology Inter., 112, 94–102 (2017).CrossRef
6.
Zurück zum Zitat A. Gabdrakhmanov, I. Galiakbarov, and I. Gaisin, “Increasing efficiency of the laser action to materials,” Materials Today: Proceedings, 19, Part 5, 1965–1967 (2019). A. Gabdrakhmanov, I. Galiakbarov, and I. Gaisin, “Increasing efficiency of the laser action to materials,” Materials Today: Proceedings, 19, Part 5, 1965–1967 (2019).
7.
Zurück zum Zitat S. Sihn, L. B. Childersac, C. T. Waltersad, M. S. Forte, A. K. Roy, and P. Vernon, “Computational and experimental study on laser heating of a Ni-based metal alloy,” Intern. J. of Heat and Mass Transfer, 102, 1034–1043 (2016).CrossRef S. Sihn, L. B. Childersac, C. T. Waltersad, M. S. Forte, A. K. Roy, and P. Vernon, “Computational and experimental study on laser heating of a Ni-based metal alloy,” Intern. J. of Heat and Mass Transfer, 102, 1034–1043 (2016).CrossRef
8.
Zurück zum Zitat A. A. Uglov, “Effect of concentrated energy flows on materials,” Materialovedenie, No. 5, 3–7 (1997). A. A. Uglov, “Effect of concentrated energy flows on materials,” Materialovedenie, No. 5, 3–7 (1997).
9.
Zurück zum Zitat A. G. Grigor’yants, Bases of Material Laser Treatment [in Russian], Mashinostroenie, Moscow (1989). A. G. Grigor’yants, Bases of Material Laser Treatment [in Russian], Mashinostroenie, Moscow (1989).
10.
Zurück zum Zitat A. A. Vedenov and G. G. Gladush, Physical Processes During Material Laser Treatment [in Russian], Énergoatomizdat, Moscow (1985). A. A. Vedenov and G. G. Gladush, Physical Processes During Material Laser Treatment [in Russian], Énergoatomizdat, Moscow (1985).
11.
Zurück zum Zitat A. N. Bekrenev, S. S. Zhatkin, and A. A. Parkin, “Study of metal heating dynamics during pulsed laser action,” Fiz. Khim. Obrab. Materialov, No. 6, 25–31(1994). A. N. Bekrenev, S. S. Zhatkin, and A. A. Parkin, “Study of metal heating dynamics during pulsed laser action,” Fiz. Khim. Obrab. Materialov, No. 6, 25–31(1994).
12.
Zurück zum Zitat P. K. Galenko, E. V. Kharanzhevskii, and D. A. Danilov, “Structural steel high-speed crystallization during surface laser treatment,” ZhTF, 72, No. 5, 48–55 (2002). P. K. Galenko, E. V. Kharanzhevskii, and D. A. Danilov, “Structural steel high-speed crystallization during surface laser treatment,” ZhTF, 72, No. 5, 48–55 (2002).
13.
Zurück zum Zitat V. S. Kraposhin and K. V. Shakhlevich, “Phase composition of iron-carbon alloys after quenching from liquid condition,” Metally, No. 5, 107–112 (1989). V. S. Kraposhin and K. V. Shakhlevich, “Phase composition of iron-carbon alloys after quenching from liquid condition,” Metally, No. 5, 107–112 (1989).
14.
Zurück zum Zitat A. A. Balatskii, A. A. Uglov, and G. Ya. Lobacheva, “Kinetics of steel melting with a laser beam,” Fiz. Khim. Obrab. Materialov, No. 1, 135–137 (1977). A. A. Balatskii, A. A. Uglov, and G. Ya. Lobacheva, “Kinetics of steel melting with a laser beam,” Fiz. Khim. Obrab. Materialov, No. 1, 135–137 (1977).
15.
Zurück zum Zitat Van Buren, Defects in Crystals [in Russian], Inostr. Lit., Moscow (1962). Van Buren, Defects in Crystals [in Russian], Inostr. Lit., Moscow (1962).
16.
Zurück zum Zitat Yu. M. Lakhtin and Ya. D. Kogan, Metal and Alloy Surface Alloying with Laser Treatment [in Russian], Mashinostroenie, Moscow (1990). Yu. M. Lakhtin and Ya. D. Kogan, Metal and Alloy Surface Alloying with Laser Treatment [in Russian], Mashinostroenie, Moscow (1990).
17.
Zurück zum Zitat I. M. Lyubarskii and A. S. Palatnik, Wear Metal Physics [in Russian], Metallurgiya, Moscow (1976). I. M. Lyubarskii and A. S. Palatnik, Wear Metal Physics [in Russian], Metallurgiya, Moscow (1976).
18.
Zurück zum Zitat N. N. Rykalin, “Action of OKG radiation on iron alloys,” Fiz. Khim. Obrab. Materialov, No. 6, 14–21 (1972). N. N. Rykalin, “Action of OKG radiation on iron alloys,” Fiz. Khim. Obrab. Materialov, No. 6, 14–21 (1972).
19.
Zurück zum Zitat D. M. Gureev, “Phase composition of high-speed steel during rapid laser melting crystallization,” Fiz. Khim. Obrab. Materialov, No. 6, 126–138 (1994). D. M. Gureev, “Phase composition of high-speed steel during rapid laser melting crystallization,” Fiz. Khim. Obrab. Materialov, No. 6, 126–138 (1994).
20.
Zurück zum Zitat A. V. Brover, “Features of steel crystallization zone structure with high-speed later hardening,” Materialovedenie, No. 4, 30–35 (2008). A. V. Brover, “Features of steel crystallization zone structure with high-speed later hardening,” Materialovedenie, No. 4, 30–35 (2008).
21.
Zurück zum Zitat A. V. Brover and L. D. D’yachenko, “Features of structure formation in metal and alloy laser melting zones,” MiTOM, No. 6, 29–33 (2009). A. V. Brover and L. D. D’yachenko, “Features of structure formation in metal and alloy laser melting zones,” MiTOM, No. 6, 29–33 (2009).
Metadaten
Titel
Features of Steel Structure Formation in Areas of High-Speed Laser Hardening from Liquid State
verfasst von
G. I. Brover
E. E. Shcherbakova
Publikationsdatum
28.09.2022
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 5-6/2022
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-022-01357-4

Weitere Artikel der Ausgabe 5-6/2022

Metallurgist 5-6/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.