Skip to main content
Erschienen in: Metallurgist 3-4/2019

16.07.2019

Features of VZhL21 Nickel-Base Superalloy Structure Formation During Selective Laser Melting, Vacuum Heat Treatment, and Hot Isostatic Compaction

verfasst von: D. I. Sukhov, N. V. Petrushin, D. V. Zaitsev, M. M. Tikhonov

Erschienen in: Metallurgist | Ausgabe 3-4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article considers features of the material structure of high-strength alloy VZhL21 obtained by selective laser melting (SLM) in different stages of its post-treatment. On the basis of analyzing the microstructure the so-called “process window” that is the interval of volumetric energy density for effective variation of (SLM) parameters during preparation of this material is determined. A study of synthesized VZhL21 alloy material is conducted by transmission microscopy with analysis of phase components and alloying element distribution within the volume of material. The efficiency of vacuum-heat and gasostatic treatment regimes is evaluated during crack healing. The structure of the material obtained is studied by light, scanning, and transmission microscopy after vacuum-heat, gasostatic, and heat treatment. The main structural components are determined by XPA.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
I. A. Treninkov (FGUP VIAM) took part in this part of the work.
 
Literatur
1.
Zurück zum Zitat E. N. Kablov, “Additive technology – dominant national technological initiative,” Intellekt. Tekhnol.., No. 2(11), 52–55 (2015). E. N. Kablov, “Additive technology – dominant national technological initiative,” Intellekt. Tekhnol.., No. 2(11), 52–55 (2015).
2.
Zurück zum Zitat M. A. Zlenko, A. A. Popovich, and I. N. Mutylina, Additive Technology in Engineering [in Russian], Izd. Politekh. Univ., St Petersburg (2013). M. A. Zlenko, A. A. Popovich, and I. N. Mutylina, Additive Technology in Engineering [in Russian], Izd. Politekh. Univ., St Petersburg (2013).
3.
Zurück zum Zitat E. N. Kablov, “Innovative development of FGUP VIAM GNTs RF for implementing strategic areas of material development and their processing technology in the field up to 2030,” Aviats. Mater. Tekhnol., No. 1(34), 3–33 (2015). E. N. Kablov, “Innovative development of FGUP VIAM GNTs RF for implementing strategic areas of material development and their processing technology in the field up to 2030,” Aviats. Mater. Tekhnol., No. 1(34), 3–33 (2015).
4.
Zurück zum Zitat Wohler’s Report 2014, Wohler’s Associates (2014). Wohler’s Report 2014, Wohler’s Associates (2014).
5.
Zurück zum Zitat A. G. Evgenov, S. I. Shcherbakov, and A. M. Rogalev, “Approval of powders for heat-resistant alloys ÉP718 and ÉP648 produced by FGUP VIAM for repair of GTE components by laser gas –powder surfacing,” Aviats. Mater. Tekhnol., No. S1, 16–23 (2016). A. G. Evgenov, S. I. Shcherbakov, and A. M. Rogalev, “Approval of powders for heat-resistant alloys ÉP718 and ÉP648 produced by FGUP VIAM for repair of GTE components by laser gas –powder surfacing,” Aviats. Mater. Tekhnol., No. S1, 16–23 (2016).
6.
Zurück zum Zitat A. G. Evgenov, D. I. Sukhov, S. V. Nerush, and A. M. Rogalev, “Mechanical properties and structure of alloy of the system Ni-Cr-W-Mo-Al-Ti-Nb prepared by selective laser melting,” Tekhnol. Mashin., No. 3, 5–9 (2016). A. G. Evgenov, D. I. Sukhov, S. V. Nerush, and A. M. Rogalev, “Mechanical properties and structure of alloy of the system Ni-Cr-W-Mo-Al-Ti-Nb prepared by selective laser melting,” Tekhnol. Mashin., No. 3, 5–9 (2016).
7.
Zurück zum Zitat E. Yu. Stepanova, G. V. Barsukov and Yu. S. Stepanov, “Breakthrough technology of a new generation for forming spatially-complex surfaces of high-tech objects,” Isv. Vestn. Tul. GU, Tekhn. Nauki, No. 8, Part 2, 243–249 (2016). E. Yu. Stepanova, G. V. Barsukov and Yu. S. Stepanov, “Breakthrough technology of a new generation for forming spatially-complex surfaces of high-tech objects,” Isv. Vestn. Tul. GU, Tekhn. Nauki, No. 8, Part 2, 243–249 (2016).
8.
Zurück zum Zitat M. A. Volosova and A. A. Okun’kova, “Ways of oprimizingthe process of selective laser melting by means of selecting laser beam treatment strategy,” Izv. Samar. Nauch. Tsentr RAN, 14, No. 4, 587–591 (2012). M. A. Volosova and A. A. Okun’kova, “Ways of oprimizingthe process of selective laser melting by means of selecting laser beam treatment strategy,” Izv. Samar. Nauch. Tsentr RAN, 14, No. 4, 587–591 (2012).
9.
Zurück zum Zitat Y.-C. Hagedorn, J. Risse, W. Meiners, et al., “Processing of Nickel Based Superalloy MAR M-247 by means of high temperature – selective laser melting (HT–SLM),” in: Bartolo et al., (editors), High Value Manufacturing (2014). Y.-C. Hagedorn, J. Risse, W. Meiners, et al., “Processing of Nickel Based Superalloy MAR M-247 by means of high temperature – selective laser melting (HT–SLM),” in: Bartolo et al., (editors), High Value Manufacturing (2014).
10.
Zurück zum Zitat G. Marchese, G. Basile, E. Bassiniet, et al., “Study of the microstructure and cracking mechanism of hastelloy X produced by laser powder bed fusion,” Materials, 11, 106–118 (2018).CrossRef G. Marchese, G. Basile, E. Bassiniet, et al., “Study of the microstructure and cracking mechanism of hastelloy X produced by laser powder bed fusion,” Materials, 11, 106–118 (2018).CrossRef
11.
Zurück zum Zitat N. V. Petrushin, A. G. Evgenov, A. V. Zavodov, and I. A. Treninkov, “Structure and strength of nickel superalloy ZhS32-VI prepared by selective laser melting on a single-crystal substrate,” Materialoved., No. 11, 190–26 (2017). N. V. Petrushin, A. G. Evgenov, A. V. Zavodov, and I. A. Treninkov, “Structure and strength of nickel superalloy ZhS32-VI prepared by selective laser melting on a single-crystal substrate,” Materialoved., No. 11, 190–26 (2017).
12.
Zurück zum Zitat J. Martin, et al., “3D-printing of high-strength aluminum alloys,” Nature, 549, 365–369 (2017).CrossRef J. Martin, et al., “3D-printing of high-strength aluminum alloys,” Nature, 549, 365–369 (2017).CrossRef
13.
Zurück zum Zitat V. Sh. Sufiyarov, A. A. Popovich. E. V. Borisov, and I. A. Polozov, “Evolution of the structure and properties of nickel superalloy after selective laser melting, hot isostatic compaction, and heat treatment,” Svet. Met., No. 1, 77–82 (2017). V. Sh. Sufiyarov, A. A. Popovich. E. V. Borisov, and I. A. Polozov, “Evolution of the structure and properties of nickel superalloy after selective laser melting, hot isostatic compaction, and heat treatment,” Svet. Met., No. 1, 77–82 (2017).
14.
Zurück zum Zitat A. Mostafa, et al., “Structure, texture and phases in 3D Printed IN718 alloy subjected to homogenization and HIP treatment,” Metals, 7, 196–219 (2017).CrossRef A. Mostafa, et al., “Structure, texture and phases in 3D Printed IN718 alloy subjected to homogenization and HIP treatment,” Metals, 7, 196–219 (2017).CrossRef
15.
Zurück zum Zitat E. N. Kablov, N. V. Petrushin, I. L. Svetlov, and I. M. Demonis, “Cast nickel superalloys of a new generation,” Aviats. Mater. Tekhnol., No. S, 36–51 (2012). E. N. Kablov, N. V. Petrushin, I. L. Svetlov, and I. M. Demonis, “Cast nickel superalloys of a new generation,” Aviats. Mater. Tekhnol., No. S, 36–51 (2012).
16.
Zurück zum Zitat N. V. Petrushin, O. G. Ospennikova, E. M. Visik, L. I. Rassokhina, and O. B. Timofeeva, “Low-density nickel superalloys,” Lit. Proizvod. No. 6, 10–25 (2012). N. V. Petrushin, O. G. Ospennikova, E. M. Visik, L. I. Rassokhina, and O. B. Timofeeva, “Low-density nickel superalloys,” Lit. Proizvod. No. 6, 10–25 (2012).
17.
Zurück zum Zitat M. V. Petrushin, O. G. Ospennikova, L. I. Rassokina, and O. N. Bityutskaya, “Cast high-strength alloy of a new generation VZhL21 with a polycrystalline structure,” Lit. Rossii, No. 06, 40–46 (2014). M. V. Petrushin, O. G. Ospennikova, L. I. Rassokina, and O. N. Bityutskaya, “Cast high-strength alloy of a new generation VZhL21 with a polycrystalline structure,” Lit. Rossii, No. 06, 40–46 (2014).
18.
Zurück zum Zitat K. Kempen, L. Thijs, J. Van Humbeeck, and J.-P Kruth, “Processing AlSi10Mg by selective laser melting: parameter optimization and material characterization,” Materials Science and Technology, 31, No. 8, 917–923 (2015).CrossRef K. Kempen, L. Thijs, J. Van Humbeeck, and J.-P Kruth, “Processing AlSi10Mg by selective laser melting: parameter optimization and material characterization,” Materials Science and Technology, 31, No. 8, 917–923 (2015).CrossRef
19.
Zurück zum Zitat I. Gibson and D. Shi, “Material properties and fabrication parameters in selective laser sintering process,” Rapid Prototyping Journal, 3, No. 4, 129–136 (1997).CrossRef I. Gibson and D. Shi, “Material properties and fabrication parameters in selective laser sintering process,” Rapid Prototyping Journal, 3, No. 4, 129–136 (1997).CrossRef
20.
Zurück zum Zitat D. I. Suhov, P. B. Mazalov, S. V. Nerush, and N. A. Khodyrev, “Effect of selective laser melting parameters on formation of porosity in synthesized materials of corrosion-resistant steel,” Trudy VIAM, No. 8(56), 4–8 (2017). D. I. Suhov, P. B. Mazalov, S. V. Nerush, and N. A. Khodyrev, “Effect of selective laser melting parameters on formation of porosity in synthesized materials of corrosion-resistant steel,” Trudy VIAM, No. 8(56), 4–8 (2017).
21.
Zurück zum Zitat M. Thomas, G. Baxter, and I. Todd, “Normalized model-based processing diagrams for additive layer manufacture of engineering alloys,” Acta Materialia, 108, 26–35 (2016).CrossRef M. Thomas, G. Baxter, and I. Todd, “Normalized model-based processing diagrams for additive layer manufacture of engineering alloys,” Acta Materialia, 108, 26–35 (2016).CrossRef
22.
Zurück zum Zitat A. F. Belov (editor), Materials Science and Nonferrous Metal Alloy Treatment [in Russian], Nauka, Moscow (1992). A. F. Belov (editor), Materials Science and Nonferrous Metal Alloy Treatment [in Russian], Nauka, Moscow (1992).
Metadaten
Titel
Features of VZhL21 Nickel-Base Superalloy Structure Formation During Selective Laser Melting, Vacuum Heat Treatment, and Hot Isostatic Compaction
verfasst von
D. I. Sukhov
N. V. Petrushin
D. V. Zaitsev
M. M. Tikhonov
Publikationsdatum
16.07.2019
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 3-4/2019
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-019-00837-4

Weitere Artikel der Ausgabe 3-4/2019

Metallurgist 3-4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.