Skip to main content

2025 | OriginalPaper | Buchkapitel

Federated Deep Learning Models for Stroke Prediction

verfasst von : Asma Mansour, Olfa Besbes, Takoua Abdellatif

Erschienen in: Web Information Systems Engineering – WISE 2024

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Stroke is a life-threatening medical condition caused by an inadequate blood supply to the brain. According to the World Health Organization (WHO), stroke is a leading cause of death and disability worldwide. After a stroke, the affected brain areas fail to function normally, making early detection of warning signs crucial for effective treatment and reducing disease severity. Various Machine Learning (ML) and Deep Learning (DL) models have been developed to predict stroke occurrence. This research highlights the effectiveness of Federated Learning (FL), a decentralized training approach that bolsters privacy while preserving model performance. Our models outperform traditional ML and DL methods, achieving an accuracy of 98%. Evaluations using metrics such as accuracy, precision, recall, and F1 score confirm the robustness and generalizability of our approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat McMahan, H.B., et al.: Communication-efficient learning of deep networks from decentralized data. In: International Conference on Artificial Intelligence and Statistics (2016) McMahan, H.B., et al.: Communication-efficient learning of deep networks from decentralized data. In: International Conference on Artificial Intelligence and Statistics (2016)
3.
Zurück zum Zitat Persson, M., et al.: Microwave-based stroke diagnosis making global prehospital thrombolytic treatment possible. IEEE Trans. Biomed. Eng. 61, 11 (2014)CrossRef Persson, M., et al.: Microwave-based stroke diagnosis making global prehospital thrombolytic treatment possible. IEEE Trans. Biomed. Eng. 61, 11 (2014)CrossRef
4.
Zurück zum Zitat Salucci, M., Polo, A., Vrba, J.: Stratégie d’apprentissage par exemples en plusieurs étapes pour l’inversion des données de diffusion par micro-ondes en temps réel sur les accidents vasculaires cérébraux. Electronique (2021) Salucci, M., Polo, A., Vrba, J.: Stratégie d’apprentissage par exemples en plusieurs étapes pour l’inversion des données de diffusion par micro-ondes en temps réel sur les accidents vasculaires cérébraux. Electronique (2021)
5.
Zurück zum Zitat Lin, C.H., Hsu, K.C., Johnson, K.R., Luby, M., Fann, Y.C.: Applying density-based outlier identifications using multiple datasets for validation of stroke clinical outcomes. Int. J. Med. Inform. 132, 103988 (2019) Lin, C.H., Hsu, K.C., Johnson, K.R., Luby, M., Fann, Y.C.: Applying density-based outlier identifications using multiple datasets for validation of stroke clinical outcomes. Int. J. Med. Inform. 132, 103988 (2019)
6.
Zurück zum Zitat Liu, T., Fan, W., Wu, C.: A hybrid machine learning approach to cerebral stroke prediction based on imbalanced medical dataset. Artificial Intell. Med. 101, 101723 (2019) Liu, T., Fan, W., Wu, C.: A hybrid machine learning approach to cerebral stroke prediction based on imbalanced medical dataset. Artificial Intell. Med. 101, 101723 (2019)
7.
Zurück zum Zitat Garg, R., Oh, E., Naidech, A., Kording, K., Prabhakaran, S.: Automating ischemic stroke subtype classification using machine learning and natural language processing. J. Stroke Cerebrovascular Diseases 28(7), 2045–2051 (2019) Garg, R., Oh, E., Naidech, A., Kording, K., Prabhakaran, S.: Automating ischemic stroke subtype classification using machine learning and natural language processing. J. Stroke Cerebrovascular Diseases 28(7), 2045–2051 (2019)
8.
Zurück zum Zitat Sabut, S., Subudhi, A., Dash, M.: Automated segmentation and classification of brain stroke using expectation maximization and random forest classifier. Biocybernetics Biomedical Eng. (2019) Sabut, S., Subudhi, A., Dash, M.: Automated segmentation and classification of brain stroke using expectation maximization and random forest classifier. Biocybernetics Biomedical Eng. (2019)
9.
Zurück zum Zitat Ortiz-Ramón, R., et al.: Identification of the presence of ischaemic stroke lesions by means of texture analysis on brain magnetic resonance images. Comput. Med. Imaging Graph. 74, 12–24 (2019)CrossRef Ortiz-Ramón, R., et al.: Identification of the presence of ischaemic stroke lesions by means of texture analysis on brain magnetic resonance images. Comput. Med. Imaging Graph. 74, 12–24 (2019)CrossRef
10.
Zurück zum Zitat Nurhayati, O., Windasari, I.P.: Stroke identification system on the mobile based CT scan image. In: 2015 2nd International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), pp. 113–116 (2015) Nurhayati, O., Windasari, I.P.: Stroke identification system on the mobile based CT scan image. In: 2015 2nd International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), pp. 113–116 (2015)
11.
Zurück zum Zitat Guoqing, W., et al.: Early identification of ischemic stroke in noncontrast computed tomography. Biomed. Signal Process. Control 52, 41–52 (2019)CrossRef Guoqing, W., et al.: Early identification of ischemic stroke in noncontrast computed tomography. Biomed. Signal Process. Control 52, 41–52 (2019)CrossRef
12.
Zurück zum Zitat DA, Rizki, Klasifikasi Pendarahan Otak Menggunakan Extreme Learning Machine. Universitas Sumatera Utara (2017) DA, Rizki, Klasifikasi Pendarahan Otak Menggunakan Extreme Learning Machine. Universitas Sumatera Utara (2017)
13.
Zurück zum Zitat Chawla, M., Sharma, S., Sivaswamy, J., Kishore, L.: A method for automatic detection and classification of stroke from brain CT images. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2009) Chawla, M., Sharma, S., Sivaswamy, J., Kishore, L.: A method for automatic detection and classification of stroke from brain CT images. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2009)
14.
Zurück zum Zitat Marbun, J.T., Seniman1, Andayani, U.: Classification of stroke disease using convolutional neural network. J. Phys. Conf. Ser. 978(1), 012092 (2018) Marbun, J.T., Seniman1, Andayani, U.: Classification of stroke disease using convolutional neural network. J. Phys. Conf. Ser. 978(1), 012092 (2018)
15.
Zurück zum Zitat Sheller, M.J., Reina, G.A., Edwards, B., Martin, J., Bakas, S.: Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 92–104. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_9CrossRef Sheller, M.J., Reina, G.A., Edwards, B., Martin, J., Bakas, S.: Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 92–104. Springer, Cham (2019). https://​doi.​org/​10.​1007/​978-3-030-11723-8_​9CrossRef
16.
Zurück zum Zitat Ce, J., et al.: Privacy-Preserving Technology to Help Millions of People: Federated Prediction Model for Stroke Prevention (2020) Ce, J., et al.: Privacy-Preserving Technology to Help Millions of People: Federated Prediction Model for Stroke Prevention (2020)
18.
Zurück zum Zitat Yu, T.T.L., et al.: Collaborative Diabetic Retinopathy Severity Classification of Optical Coherence Tomography Data through Federated Learning. Invest. Ophthalmol. Vis. Sci 62(8), 1029–1029 (2021) Yu, T.T.L., et al.: Collaborative Diabetic Retinopathy Severity Classification of Optical Coherence Tomography Data through Federated Learning. Invest. Ophthalmol. Vis. Sci 62(8), 1029–1029 (2021)
19.
Zurück zum Zitat Lo, J., et al.: Federated learning for microvasculature segmentation and diabetic retinopathy classification of OCT data. Ophthalmol. Sci. 1(4), 100069 (2021) Lo, J., et al.: Federated learning for microvasculature segmentation and diabetic retinopathy classification of OCT data. Ophthalmol. Sci. 1(4), 100069 (2021)
20.
Zurück zum Zitat Nguyen, T.X., et al.: Federated learning in ocular imaging: current progress and future direction. Diagnostics 12(11), 2835 (2022) Nguyen, T.X., et al.: Federated learning in ocular imaging: current progress and future direction. Diagnostics 12(11), 2835 (2022)
21.
Zurück zum Zitat Elhanashi, A., Dini, P., Saponara, S., Zheng, Q.: TeleStroke: real-time stroke detection with federated learning and Yolov8 on edge devices. J. Real-Time Image Process. 21(4), 121 (2024) Elhanashi, A., Dini, P., Saponara, S., Zheng, Q.: TeleStroke: real-time stroke detection with federated learning and Yolov8 on edge devices. J. Real-Time Image Process. 21(4), 121 (2024)
22.
Zurück zum Zitat Balázs B., Allaart, C.G., van Halteren, A.: Predicting stroke outcome: a case for multimodal deep learning methods with tabular and CT Perfusion data. J. Artif. Intell. Med. 147, 102719 (2024) Balázs B., Allaart, C.G., van Halteren, A.: Predicting stroke outcome: a case for multimodal deep learning methods with tabular and CT Perfusion data. J. Artif. Intell. Med. 147, 102719 (2024)
23.
Zurück zum Zitat Öman, O., Mäkelä, T., Salli, E. et al.: 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke. Eur. Radiol. Exp. 3, 1–11 (2019) Öman, O., Mäkelä, T., Salli, E. et al.: 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke. Eur. Radiol. Exp. 3, 1–11 (2019)
24.
Zurück zum Zitat Laney, D.: 3D Data Management: Controlling Data Volume, Velocity, and Variety. META Group (2001) Laney, D.: 3D Data Management: Controlling Data Volume, Velocity, and Variety. META Group (2001)
25.
Zurück zum Zitat Zunair, H.: 3D image classification from CT scans. Computer Vision (23 Sep 2020) Zunair, H.: 3D image classification from CT scans. Computer Vision (23 Sep 2020)
26.
Zurück zum Zitat Nielsen, A., Hansen, M.B., Tietze, A., Mouridsen, K.: Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning. Stroke 49(6), 1394–1401 (2018) Nielsen, A., Hansen, M.B., Tietze, A., Mouridsen, K.: Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning. Stroke 49(6), 1394–1401 (2018)
27.
Zurück zum Zitat Wang, H.L., et al.: Automatic machine-learning-based outcome prediction in patients with primary intracerebral hemorrhage. Front. Neurol. 10, 910 (2019) Wang, H.L., et al.: Automatic machine-learning-based outcome prediction in patients with primary intracerebral hemorrhage. Front. Neurol. 10, 910 (2019)
Metadaten
Titel
Federated Deep Learning Models for Stroke Prediction
verfasst von
Asma Mansour
Olfa Besbes
Takoua Abdellatif
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_32