Skip to main content

2025 | OriginalPaper | Buchkapitel

Federated Learning for Personalized Tourism Promotion: Balancing Recommendation Accuracy and User Privacy

verfasst von : S. Amutha, P. Salini

Erschienen in: Innovative Computing and Communications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Deep learning allows the recommender system to discover deep patterns and representations from data, capturing complex interactions between users and objects across multiple domains. Deep learning manages massive amounts of data and produces reliable representations to have effect on the quality of cross-domain recommender system. We utilize a federated learning algorithm to ensure that each domain retains control over its data and contributes to the global improvement of the suggestion, while also avoiding the sharing of sensitive information. To create major scenarios, privacy concerns are restricted to sharing the data. We recommend a novel model for personalizing the recommendation system by embedding the techniques of Federated Learning in tourism promotion. This model enables collaborative training across multiple domains to provide diverse recommendations and secure data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Zhang, S., Ma, X., Wang, Y., Zhou, Y., & Yu, D. (2022). An embedding and interactions learning approach for ID feature in deep recommender system (Vol. 210). Zhang, S., Ma, X., Wang, Y., Zhou, Y., & Yu, D. (2022). An embedding and interactions learning approach for ID feature in deep recommender system (Vol. 210).
4.
Zurück zum Zitat Trivedi, S., Chheda, R., Bohara, D., & Bohara, D. (2023). ScienceDirect music recommendation based on affective image content analysis music recommendation based on affective content (pp. 1–10). Trivedi, S., Chheda, R., Bohara, D., & Bohara, D. (2023). ScienceDirect music recommendation based on affective image content analysis music recommendation based on affective content (pp. 1–10).
9.
Zurück zum Zitat Imakura, A., Tsunoda, R., Kagawa, R., Yamagata, K., & Sakurai, T. (2023). DC-COX: Data collaboration cox proportional hazards model for privacy-preserving survival analysis on multiple parties (Vol. 137). Imakura, A., Tsunoda, R., Kagawa, R., Yamagata, K., & Sakurai, T. (2023). DC-COX: Data collaboration cox proportional hazards model for privacy-preserving survival analysis on multiple parties (Vol. 137).
10.
Zurück zum Zitat Yan, D., Zhao, Y., Yang, Z., Jin, Y., & Zhang, Y. (2022). FedCDR: Privacy-preserving federated cross-domain recommendation (Vol. 8, pp. 552–560). Yan, D., Zhao, Y., Yang, Z., Jin, Y., & Zhang, Y. (2022). FedCDR: Privacy-preserving federated cross-domain recommendation (Vol. 8, pp. 552–560).
16.
Zurück zum Zitat Murdock, I., Carley, K. M., & Yağan, O. (2023). Identifying cross-platform user relationships in 2020 U.S. election fraud and protest discussions (Vol. 33). Murdock, I., Carley, K. M., & Yağan, O. (2023). Identifying cross-platform user relationships in 2020 U.S. election fraud and protest discussions (Vol. 33).
17.
Zurück zum Zitat Ma, H., Chen, X., & Lin, L. Triple sequence learning for cross-domain recommendation (Vol. 1, no. 1). Association for Computing Machinery. Ma, H., Chen, X., & Lin, L. Triple sequence learning for cross-domain recommendation (Vol. 1, no. 1). Association for Computing Machinery.
18.
20.
Zurück zum Zitat Ezaldeen, H., Bisoy, S. K., Misra, R., & Alatrash, R. (2023). Semantics aware intelligent framework for content-based e-learning recommendation (Vol. 3). Ezaldeen, H., Bisoy, S. K., Misra, R., & Alatrash, R. (2023). Semantics aware intelligent framework for content-based e-learning recommendation (Vol. 3).
23.
Zurück zum Zitat Chen, Z., Li, J., Cheng, L., & Liu, X. (2023). Federated-WDCGAN: A federated smart meter data sharing framework for privacy preservation (Vol. 334). Chen, Z., Li, J., Cheng, L., & Liu, X. (2023). Federated-WDCGAN: A federated smart meter data sharing framework for privacy preservation (Vol. 334).
24.
Zurück zum Zitat Chen, C., Wu, H., Su, J., Lyu, L., Zheng, X., & Wang, L. (2022). Differential private knowledge transfer for privacy-preserving cross-domain recommendation. In WWW 2022—Proceedings of ACM web conference 2022 (pp. 1455–1465). https://doi.org/10.1145/3485447.3512192 Chen, C., Wu, H., Su, J., Lyu, L., Zheng, X., & Wang, L. (2022). Differential private knowledge transfer for privacy-preserving cross-domain recommendation. In WWW 2022—Proceedings of ACM web conference 2022 (pp. 1455–1465). https://​doi.​org/​10.​1145/​3485447.​3512192
33.
Zurück zum Zitat Bharati, S., Hossain, M. R., Podder, P., & Surya, V. B. Federated learning: Applications, challenges and future directions. Bharati, S., Hossain, M. R., Podder, P., & Surya, V. B. Federated learning: Applications, challenges and future directions.
Metadaten
Titel
Federated Learning for Personalized Tourism Promotion: Balancing Recommendation Accuracy and User Privacy
verfasst von
S. Amutha
P. Salini
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4152-6_28