Skip to main content

2024 | OriginalPaper | Buchkapitel

FedPV-FS: A Feature Selection Method for Federated Learning in Insurance Precision Marketing

verfasst von : Chunkai Wang, Jian Feng

Erschienen in: Intelligent Information Processing XII

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Insurance companies always use federated learning to integrate external data sources for data analysis and improve the conversion rate of insurance precision marketing. However, due to imbalanced data distribution and the presence of null data, the joint modeling often suffers from low robustness and is prone to falling into the dilemma of under-fitting. Therefore, the feature selection for federated learning needs to be incorporated before the joint modeling to improve the accuracy of predictions. In this paper, we propose the FedPV-FS method, which includes two-party feature selection based on public verifiable covert (PVC), and multi-party federated feature selection based on verifiable secret sharing (VSS). Moreover, we iteratively optimize federated feature selection using data selection, transformation, and integration. Experiments show that our method can achieve high-quality feature selection for increasing the optimization objective to 88.4%, promote the continuous increase of insurance premiums, and has good applications in insurance precision marketing scenarios.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat McMahan, H.B., Moore, E., Ramage, D., et al.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017) McMahan, H.B., Moore, E., Ramage, D., et al.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)
2.
Zurück zum Zitat Yang, Q., Liu, Y., Cheng, Y., et al.: Federated learning. Synth. Lect. Artif. Intell. Mach. Learn. 13(3), 1–207 (2019) Yang, Q., Liu, Y., Cheng, Y., et al.: Federated learning. Synth. Lect. Artif. Intell. Mach. Learn. 13(3), 1–207 (2019)
3.
Zurück zum Zitat Wang, J., Zhang, A., Li, X., et al.: Efficient participant contribution evaluation for horizontal and vertical federated learning. In: 2022 IEEE 38th International Conference on Data Engineering (ICDE), pp. 911–923 (2022) Wang, J., Zhang, A., Li, X., et al.: Efficient participant contribution evaluation for horizontal and vertical federated learning. In: 2022 IEEE 38th International Conference on Data Engineering (ICDE), pp. 911–923 (2022)
4.
Zurück zum Zitat Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014)CrossRef Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014)CrossRef
5.
Zurück zum Zitat Pan, F., Meng, D., Zhang, Y., et al.: Secure federated feature selection for cross-feature federated learning (2020) Pan, F., Meng, D., Zhang, Y., et al.: Secure federated feature selection for cross-feature federated learning (2020)
6.
Zurück zum Zitat Yao, A.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164. IEEE Computer Society, Chicago, Illinois, USA (1982) Yao, A.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164. IEEE Computer Society, Chicago, Illinois, USA (1982)
7.
Zurück zum Zitat Yang, Z., Sun, Q.: Joint think locally and globally: communication-efficient federated learning with feature-aligned filter selection. Comput. Commun. (2023) Yang, Z., Sun, Q.: Joint think locally and globally: communication-efficient federated learning with feature-aligned filter selection. Comput. Commun. (2023)
8.
Zurück zum Zitat Mahanipour, A., Khamfroush, H.: Wrapper-based federated feature selection for iot environments. In: 2023 International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, USA, pp. 214–219 (2023) Mahanipour, A., Khamfroush, H.: Wrapper-based federated feature selection for iot environments. In: 2023 International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, USA, pp. 214–219 (2023)
9.
Zurück zum Zitat Chen, P., Du, X., Lu, Z., et al.: EVFL: an explainable vertical federated learning for data-oriented artificial intelligence systems. J. Syst. Archit. 126, 102474 (2022)CrossRef Chen, P., Du, X., Lu, Z., et al.: EVFL: an explainable vertical federated learning for data-oriented artificial intelligence systems. J. Syst. Archit. 126, 102474 (2022)CrossRef
10.
Zurück zum Zitat Feng, S.: Vertical federated learning-based feature selection with non-overlapping sample utilization. Expert Syst. Appl. (2022) Feng, S.: Vertical federated learning-based feature selection with non-overlapping sample utilization. Expert Syst. Appl. (2022)
11.
Zurück zum Zitat Li, A., Peng, H., Zhang, L., et al.: edSDG-FS: efficient and secure feature selection for vertical federated learning. In: IEEE International Conference on Computer Communication (2023) Li, A., Peng, H., Zhang, L., et al.: edSDG-FS: efficient and secure feature selection for vertical federated learning. In: IEEE International Conference on Computer Communication (2023)
12.
14.
Zurück zum Zitat Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: 28th Annual Symposium on Foundations of Computer Science, Los Angeles, CA, USA, pp. 427–438 (1987) Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: 28th Annual Symposium on Foundations of Computer Science, Los Angeles, CA, USA, pp. 427–438 (1987)
15.
Zurück zum Zitat Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM, 637–647 (1985) Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM, 637–647 (1985)
18.
Zurück zum Zitat Dua, D., Graff, C.: UCI machine learning repository (2017) Dua, D., Graff, C.: UCI machine learning repository (2017)
19.
Zurück zum Zitat Cheng, K., Fan, T., Jin, Y., et al.:SecureBoost: a lossless federated learning framework. arXiv (2019) Cheng, K., Fan, T., Jin, Y., et al.:SecureBoost: a lossless federated learning framework. arXiv (2019)
20.
Zurück zum Zitat Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. CoRR abs/1603.02754 (2016) Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. CoRR abs/1603.02754 (2016)
Metadaten
Titel
FedPV-FS: A Feature Selection Method for Federated Learning in Insurance Precision Marketing
verfasst von
Chunkai Wang
Jian Feng
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_31