Skip to main content

2008 | OriginalPaper | Buchkapitel

48. Feedback Control in Hearing Aids

verfasst von : Ann Spriet, Dr., Simon Doclo, Ph.D, Marc Moonen, Prof., Jan Wouters, Prof.

Erschienen in: Springer Handbook of Speech Processing

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Acoustic feedback limits the maximum amplification that can be used in a hearing aid without making it unstable. This chapter gives an overview of existing techniques for feedback suppression and, in particular, adaptive feedback cancellation. Because of the presence of a closed signal loop, standard adaptive filtering techniques for open-loop systems fail to provide a reliable feedback path estimate if the desired signal is spectrally colored. Several approaches for improving the estimation accuracy of the adaptive feedback canceller will be reviewed and evaluated for acoustic feedback paths measured in a commercial behind-the-ear hearing aid.
This chapter is organized as follows. Section 48.1 gives a mathematical formulation of the acoustic feedback problem in hearing aids and briefly describes the two possible approaches to reduce its negative effects, i.e., feedforward suppression and feedback cancellation. In addition, performance measures for feedback cancellation are defined.
Section 48.2 discusses the standard continuous adaptation feedback (CAF) cancellation algorithm that is widely studied for application in hearing aids. We demonstrate that the standard CAF suffers from a model error or bias when the desired signal is spectrally colored (e.g., a speech signal). In the literature, several solutions have been proposed to reduce the bias of the CAF. A common approach is to incorporate signal decorrelating operations (such as delays) in the signal processing path of the hearing aid or to reduce the adaptation speed of the adaptive feedback canceller. Other techniques, discussed in Sect. 48.3, exploit prior knowledge of the acoustic feedback path to improve the adaptation of the feedback canceller. In Sect. 48.4, a final class of techniques is presented that view the feedback path as a part of a closed-loop system and apply closed-loop system identification theory [48.1]. Among the different closed-loop identification methods, especially the direct method is an appealing approach for feedback cancellation. In contrast to the other methods, this technique does not require the use of an external probe signal. The direct method reduces the bias of the feedback canceller by incorporating a (stationary or time-varying) model of the desired signal x[k] in the identification.
Finally, Sect. 48.5 compares the steady-state performance as well as the tracking performance of different algorithms for acoustic feedback paths measured in a commercial behind-the-ear hearing aid.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
48.1.
Zurück zum Zitat U. Forssell: Closed-loop Identification - Methods, Theory and Applications. Ph.D. Thesis (Linköping Universitet, Linköping 1999) U. Forssell: Closed-loop Identification - Methods, Theory and Applications. Ph.D. Thesis (Linköping Universitet, Linköping 1999)
48.2.
Zurück zum Zitat L. Ljung, T. Söderström: Theory and Practice of Recursive Identification (MIT, Cambridge 1983)MATH L. Ljung, T. Söderström: Theory and Practice of Recursive Identification (MIT, Cambridge 1983)MATH
48.3.
Zurück zum Zitat J. Hellgren, T. Lunner, S. Arlinger: System identification of feedback in hearing aids, J. Acoust. Soc. Am. 105(6), 3481-3496 (1999)CrossRef J. Hellgren, T. Lunner, S. Arlinger: System identification of feedback in hearing aids, J. Acoust. Soc. Am. 105(6), 3481-3496 (1999)CrossRef
48.4.
Zurück zum Zitat J. Hellgren, T. Lunner, S. Arlinger: Variations in the feedback of hearing aids, J. Acoust. Soc. Am. 106(5), 2821-2833 (1999)CrossRef J. Hellgren, T. Lunner, S. Arlinger: Variations in the feedback of hearing aids, J. Acoust. Soc. Am. 106(5), 2821-2833 (1999)CrossRef
48.5.
Zurück zum Zitat B. Rafaely, M. Roccasalva-Firenze, E. Payne: Feedback path variability modeling for robust hearing aids, J. Acoust. Soc. Am. 107(5), 2665-2673 (2000)CrossRef B. Rafaely, M. Roccasalva-Firenze, E. Payne: Feedback path variability modeling for robust hearing aids, J. Acoust. Soc. Am. 107(5), 2665-2673 (2000)CrossRef
48.6.
Zurück zum Zitat M.R. Stinson, G.A. Daigle: Effect of handset proximity on hearing aid feedback, J. Acoust. Soc. Am. 115(3), 1147-1156 (2004)CrossRef M.R. Stinson, G.A. Daigle: Effect of handset proximity on hearing aid feedback, J. Acoust. Soc. Am. 115(3), 1147-1156 (2004)CrossRef
48.7.
Zurück zum Zitat D.K. Bustamante, T.L. Worrall, M.J. Williamson: Measurement and adaptive suppression of acoustic feedback in hearing aids, Proc. ICASSP, Vol. 3 (Glasgow 1989) pp. 2017-2020 D.K. Bustamante, T.L. Worrall, M.J. Williamson: Measurement and adaptive suppression of acoustic feedback in hearing aids, Proc. ICASSP, Vol. 3 (Glasgow 1989) pp. 2017-2020
48.8.
Zurück zum Zitat V. Hohmann, V. Hamacher, I. Holube, B. Kollmeier, T. Wittkop: Method for the operation of a hearing aid device or hearing device system as well as hearing aid device or hearing aid device system, US Patent 0176595 (2002), A1 V. Hohmann, V. Hamacher, I. Holube, B. Kollmeier, T. Wittkop: Method for the operation of a hearing aid device or hearing device system as well as hearing aid device or hearing aid device system, US Patent 0176595 (2002), A1
48.9.
Zurück zum Zitat J.A. Maxwell, P.M. Zurek: Reducing acoustic feedback in hearing aids, IEEE Trans. Speech Audio Process. 3(4), 304-313 (1995)CrossRef J.A. Maxwell, P.M. Zurek: Reducing acoustic feedback in hearing aids, IEEE Trans. Speech Audio Process. 3(4), 304-313 (1995)CrossRef
48.10.
Zurück zum Zitat R. Porayath, J. Daniel: Acoustic feedback elimination using adaptive notch filter algorithm, US Patent 5999631 (1999) R. Porayath, J. Daniel: Acoustic feedback elimination using adaptive notch filter algorithm, US Patent 5999631 (1999)
48.11.
Zurück zum Zitat R. Wang, R. Harjani: Acoustic feedback cancellation in hearing aids, Proc. ICASSP, Vol. 1 (1993) pp. 137-140 R. Wang, R. Harjani: Acoustic feedback cancellation in hearing aids, Proc. ICASSP, Vol. 1 (1993) pp. 137-140
48.12.
Zurück zum Zitat J.L. Nielsen, U.P. Svensson: Performance of some linear time-varying systems in control of acoustic feedback, J. Acoust. Soc. Am. 1(106), 240-254 (1999)CrossRef J.L. Nielsen, U.P. Svensson: Performance of some linear time-varying systems in control of acoustic feedback, J. Acoust. Soc. Am. 1(106), 240-254 (1999)CrossRef
48.13.
Zurück zum Zitat M.R. Schroeder: Improvement of acoustic-feedback stability by frequency shifting, J. Acoust. Soc. Am. 36(9), 1718-1724 (1976)CrossRef M.R. Schroeder: Improvement of acoustic-feedback stability by frequency shifting, J. Acoust. Soc. Am. 36(9), 1718-1724 (1976)CrossRef
48.14.
Zurück zum Zitat J.M. Kates: Room reverberation effects in hearing aid feedback cancellation, J. Acoust. Soc. Am. 109(1), 367-378 (2001)CrossRef J.M. Kates: Room reverberation effects in hearing aid feedback cancellation, J. Acoust. Soc. Am. 109(1), 367-378 (2001)CrossRef
48.15.
Zurück zum Zitat H.-F. Chi, S.X. Goa, S.D. Soli, A. Alwan: Band-limited feedback cancellation with a modified filtered-X LMS algorithm for hearing aids, Speech Commun. 39(1-2), 147-161 (2003)CrossRefMATH H.-F. Chi, S.X. Goa, S.D. Soli, A. Alwan: Band-limited feedback cancellation with a modified filtered-X LMS algorithm for hearing aids, Speech Commun. 39(1-2), 147-161 (2003)CrossRefMATH
48.16.
Zurück zum Zitat J.E. Greenberg, P.M. Zurek, M. Brantley: Evaluation of feedback-reduction algorithms for hearing aids, J. Acoust. Soc. Am. 108(5), 2366-2376 (2000)CrossRef J.E. Greenberg, P.M. Zurek, M. Brantley: Evaluation of feedback-reduction algorithms for hearing aids, J. Acoust. Soc. Am. 108(5), 2366-2376 (2000)CrossRef
48.17.
Zurück zum Zitat N.A. Shusina, B. Rafaely: Unbiased adaptive feedback cancellation in hearing aids by closed-loop identification, IEEE Trans. Audio Speech Lang. Process. 14(2), 658-665 (2006)CrossRef N.A. Shusina, B. Rafaely: Unbiased adaptive feedback cancellation in hearing aids by closed-loop identification, IEEE Trans. Audio Speech Lang. Process. 14(2), 658-665 (2006)CrossRef
48.18.
Zurück zum Zitat A. Spriet, I. Proudler, M. Moonen, J. Wouters: Adaptive feedback cancellation in hearing aids with linear prediction of the desired signal, IEEE Trans. Signal Process. 53(10), 3749-3763 (2005)MathSciNetCrossRefMATH A. Spriet, I. Proudler, M. Moonen, J. Wouters: Adaptive feedback cancellation in hearing aids with linear prediction of the desired signal, IEEE Trans. Signal Process. 53(10), 3749-3763 (2005)MathSciNetCrossRefMATH
48.19.
Zurück zum Zitat J.M. Kates: Feedback cancellation in hearing aids: Results from a computer simulation, Signal Process. 39(3), 553-562 (1991) J.M. Kates: Feedback cancellation in hearing aids: Results from a computer simulation, Signal Process. 39(3), 553-562 (1991)
48.20.
Zurück zum Zitat Y. Park, D. Kim, I. Kim: An efficient feedback cancellation for multiband compression hearing aids, Proc. 20th Annu. Int. Conf. Eng. Med. Biol. Soc., Vol. 5 (1998) pp. 2706-2709 Y. Park, D. Kim, I. Kim: An efficient feedback cancellation for multiband compression hearing aids, Proc. 20th Annu. Int. Conf. Eng. Med. Biol. Soc., Vol. 5 (1998) pp. 2706-2709
48.21.
Zurück zum Zitat S. Thipphayathetthana, C. Chinrungrueng: Variable step-size of the least-mean-square algorithm for reducing acoustic feedback in hearing aids, IEEE Asi-Pacific Conf. on Circuits and Systems (2000) pp. 407-410 S. Thipphayathetthana, C. Chinrungrueng: Variable step-size of the least-mean-square algorithm for reducing acoustic feedback in hearing aids, IEEE Asi-Pacific Conf. on Circuits and Systems (2000) pp. 407-410
48.22.
Zurück zum Zitat J.M. Kates: Adaptive feedback cancellation in hearing aids. In: Adaptive Signal Processing: Applications to Real-World Problems, ed. by J. Benesty, Y. Huang (Springer, Berlin, Heidelberg 2003) pp. 23-55CrossRef J.M. Kates: Adaptive feedback cancellation in hearing aids. In: Adaptive Signal Processing: Applications to Real-World Problems, ed. by J. Benesty, Y. Huang (Springer, Berlin, Heidelberg 2003) pp. 23-55CrossRef
48.23.
Zurück zum Zitat J.E. Greenberg: Modified LMS algorithms for speech processing with an adaptive noise canceller, IEEE Trans. Speech Audio Process. 6(4), 338-350 (1998)CrossRef J.E. Greenberg: Modified LMS algorithms for speech processing with an adaptive noise canceller, IEEE Trans. Speech Audio Process. 6(4), 338-350 (1998)CrossRef
48.24.
Zurück zum Zitat T. Fillon, J. Prado: Acoustic feedback cancellation for hearing-aids, using multi-delay filter, 5th Nordic Signal Process. Symp. (NORSIG) (on board Hurtigruten, 2002) T. Fillon, J. Prado: Acoustic feedback cancellation for hearing-aids, using multi-delay filter, 5th Nordic Signal Process. Symp. (NORSIG) (on board Hurtigruten, 2002)
48.25.
Zurück zum Zitat A. Kaelin, A. Lindgren, S. Wyrsch: A digital frequency-domain implementation of a very high gain hearing aid with compensation for recruitment of loudness and acoustic echo cancellation, Signal Process. 64(1), 71-85 (1998)CrossRefMATH A. Kaelin, A. Lindgren, S. Wyrsch: A digital frequency-domain implementation of a very high gain hearing aid with compensation for recruitment of loudness and acoustic echo cancellation, Signal Process. 64(1), 71-85 (1998)CrossRefMATH
48.26.
Zurück zum Zitat J.-S. Soo, K. Pang: Multidelay block frequency domain adaptive filter, IEEE Trans. Acoust. Speech Signal Process. 38(4), 788-798 (1990) J.-S. Soo, K. Pang: Multidelay block frequency domain adaptive filter, IEEE Trans. Acoust. Speech Signal Process. 38(4), 788-798 (1990)
48.27.
Zurück zum Zitat A. Spriet, G. Rombouts, M. Moonen, J. Wouters: Adaptive feedback cancellation in hearing aids, J. Franklin Inst. 343, 545-572 (2006)CrossRefMATH A. Spriet, G. Rombouts, M. Moonen, J. Wouters: Adaptive feedback cancellation in hearing aids, J. Franklin Inst. 343, 545-572 (2006)CrossRefMATH
48.28.
Zurück zum Zitat M.G. Siqueira, A. Alwan: Steady-state analysis of continuous adaptation in acoustic feedback reduction systems for hearing-aids, IEEE Trans. Speech Audio Process. 8(4), 443-453 (2000)CrossRef M.G. Siqueira, A. Alwan: Steady-state analysis of continuous adaptation in acoustic feedback reduction systems for hearing-aids, IEEE Trans. Speech Audio Process. 8(4), 443-453 (2000)CrossRef
48.29.
Zurück zum Zitat M.A. Stone, B.C.J. Moore: Tolerable hearing aid delays. I. estimation of limits imposed by the auditory path alone using simulated hearing losses, Ear Hear. 20(3), 182-191 (1999)CrossRef M.A. Stone, B.C.J. Moore: Tolerable hearing aid delays. I. estimation of limits imposed by the auditory path alone using simulated hearing losses, Ear Hear. 20(3), 182-191 (1999)CrossRef
48.30.
Zurück zum Zitat J. Hellgren: Analysis of feedback cancellation in hearing aids with filtered-X LMS and the direct method of closed loop identification, IEEE Trans. Speech Audio Process. 10(2), 119-131 (2002)CrossRef J. Hellgren: Analysis of feedback cancellation in hearing aids with filtered-X LMS and the direct method of closed loop identification, IEEE Trans. Speech Audio Process. 10(2), 119-131 (2002)CrossRef
48.31.
Zurück zum Zitat S. Laugesen, K.V. Hansen, J. Hellgren: Acceptable delays in hearing aids and implications for feedback cancellation, J. Acoust. Soc. Am. 105(2), 1211-1212 (1999)CrossRef S. Laugesen, K.V. Hansen, J. Hellgren: Acceptable delays in hearing aids and implications for feedback cancellation, J. Acoust. Soc. Am. 105(2), 1211-1212 (1999)CrossRef
48.32.
Zurück zum Zitat M. Nilsson, S.D. Soli, A. Sullivan: Development of the Hearing in Noise Test for the measurement of speech reception thresholds in quiet and in noise, J. Acoust. Soc. Am. 95(2), 1085-1099 (1994)CrossRef M. Nilsson, S.D. Soli, A. Sullivan: Development of the Hearing in Noise Test for the measurement of speech reception thresholds in quiet and in noise, J. Acoust. Soc. Am. 95(2), 1085-1099 (1994)CrossRef
48.33.
Zurück zum Zitat A.M. Engebretson, M.F. George: Properties of an adaptive feedback equalization algorithm, J. Rehabil. Res. Devel. 30(1), 8-16 (1993) A.M. Engebretson, M.F. George: Properties of an adaptive feedback equalization algorithm, J. Rehabil. Res. Devel. 30(1), 8-16 (1993)
48.34.
Zurück zum Zitat C.P. Janse, P.A.A. Timmermans: Signal amplifier system with improved echo cancellation, US Patent 5748751 (1998) C.P. Janse, P.A.A. Timmermans: Signal amplifier system with improved echo cancellation, US Patent 5748751 (1998)
48.35.
Zurück zum Zitat H.A.L. Joson, F. Asano, Y. Suzuki, S. Toshio: Adaptive feedback cancellation with frequency compression for hearing aids, J. Acoust. Soc. Am. 94(6), 3248-3254 (1993)CrossRef H.A.L. Joson, F. Asano, Y. Suzuki, S. Toshio: Adaptive feedback cancellation with frequency compression for hearing aids, J. Acoust. Soc. Am. 94(6), 3248-3254 (1993)CrossRef
48.36.
Zurück zum Zitat T. Kaulberg: A hearing aid with an adaptive filter for suppression of acoustic feedback, European Patent 1191814 (2002) T. Kaulberg: A hearing aid with an adaptive filter for suppression of acoustic feedback, European Patent 1191814 (2002)
48.37.
Zurück zum Zitat J. Nielsen, M. Ekelid: Feedback cancellation using bandwidth detection, WO Patent 01/06746 A2 (2001) J. Nielsen, M. Ekelid: Feedback cancellation using bandwidth detection, WO Patent 01/06746 A2 (2001)
48.38.
Zurück zum Zitat J. Nielsen, M. Ekelid: Feedback cancellation with low frequency input, WO Patent 01/06812 A1 (2001) J. Nielsen, M. Ekelid: Feedback cancellation with low frequency input, WO Patent 01/06812 A1 (2001)
48.39.
Zurück zum Zitat J.M. Kates: Constrained adaptation for feedback cancellation in hearing aids, J. Acoust. Soc. Am. 106(2), 1010-1019 (1999)CrossRef J.M. Kates: Constrained adaptation for feedback cancellation in hearing aids, J. Acoust. Soc. Am. 106(2), 1010-1019 (1999)CrossRef
48.40.
Zurück zum Zitat S. Gao, S. Soli, H.-F. Chi: Band-limited adaptive feedback canceller for hearing aids, European Patent 1118247 (1999) S. Gao, S. Soli, H.-F. Chi: Band-limited adaptive feedback canceller for hearing aids, European Patent 1118247 (1999)
48.41.
Zurück zum Zitat B. Rafaely, N.A. Shusina, J.L. Hayes: Robust compensation with adaptive feedback cancellation in hearing aids, Speech Commun. 39(1-2), 163-170 (2003)CrossRefMATH B. Rafaely, N.A. Shusina, J.L. Hayes: Robust compensation with adaptive feedback cancellation in hearing aids, Speech Commun. 39(1-2), 163-170 (2003)CrossRefMATH
48.42.
Zurück zum Zitat S.D. Soli, P. Widin, K.M. Buckley: Auditory prosthesis, noise suppression apparatus and feedback suppression apparatus having focused adaptive filtering, US Patent 5402496 (1993) S.D. Soli, P. Widin, K.M. Buckley: Auditory prosthesis, noise suppression apparatus and feedback suppression apparatus having focused adaptive filtering, US Patent 5402496 (1993)
48.43.
Zurück zum Zitat A. Spriet, I. Proudler, M. Moonen, J. Wouters: An instrumental variable method for adaptive feedback cancellation in hearing aids, Proc. ICASSP, Vol. 3 (Philadelphia 2005) pp. 129-132 A. Spriet, I. Proudler, M. Moonen, J. Wouters: An instrumental variable method for adaptive feedback cancellation in hearing aids, Proc. ICASSP, Vol. 3 (Philadelphia 2005) pp. 129-132
48.45.
Zurück zum Zitat J. Hellgren, U. Forssell: Bias of feedback cancellation algorithms in hearing aids based on direct closed loop identification, IEEE Trans. Speech Audio Process. 9(7), 906-913 (2001)CrossRef J. Hellgren, U. Forssell: Bias of feedback cancellation algorithms in hearing aids based on direct closed loop identification, IEEE Trans. Speech Audio Process. 9(7), 906-913 (2001)CrossRef
48.46.
Zurück zum Zitat R. Leber, W. Schaub: Circuit and method for the adaptive suppression of an acoustic feedback, US Patent 6611600 (2003) R. Leber, W. Schaub: Circuit and method for the adaptive suppression of an acoustic feedback, US Patent 6611600 (2003)
48.47.
Zurück zum Zitat N.A. Shusina, B. Rafaely: Feedback cancellation in hearing aids based on indirect closed-loop identification, Proc. IEEE Benelux Signal Process. Symp. (SPS) (Leuven 2002) pp. 177-180 N.A. Shusina, B. Rafaely: Feedback cancellation in hearing aids based on indirect closed-loop identification, Proc. IEEE Benelux Signal Process. Symp. (SPS) (Leuven 2002) pp. 177-180
48.48.
Zurück zum Zitat G. Rombouts, T. van Waterschoot, K. Struyve, M. Moonen: Acoustic feedback suppression for long acoustic paths using a nonstationary source model, IEEE Trans. Signal Process. 54(9), 3426-3434 (2004), accepted for publication, Available as Technical Report ESAT-SISTA/TR 2004-151, K.U.CrossRef G. Rombouts, T. van Waterschoot, K. Struyve, M. Moonen: Acoustic feedback suppression for long acoustic paths using a nonstationary source model, IEEE Trans. Signal Process. 54(9), 3426-3434 (2004), accepted for publication, Available as Technical Report ESAT-SISTA/TR 2004-151, K.U.CrossRef
48.49.
Zurück zum Zitat J.R. Deller, J.G. Proakis, J.H.L. Hansen: Discrete-Time Processing of Speech Signals (Macmillan, Englewood Cliffs 1993) J.R. Deller, J.G. Proakis, J.H.L. Hansen: Discrete-Time Processing of Speech Signals (Macmillan, Englewood Cliffs 1993)
48.50.
Zurück zum Zitat N. Bisgaard, O. Dyrlund: Acoustic feedback part 2: A digital system for suppression of feedback, Hear. Instrum. 42, 44-45 (1991) N. Bisgaard, O. Dyrlund: Acoustic feedback part 2: A digital system for suppression of feedback, Hear. Instrum. 42, 44-45 (1991)
48.51.
Zurück zum Zitat H.R. Skovgaard: Hearing aid compensating for acoustic feedback, US Patent 5680467 (1997) H.R. Skovgaard: Hearing aid compensating for acoustic feedback, US Patent 5680467 (1997)
48.52.
Zurück zum Zitat J.H. Stott, N.D. Wells: Method and apparatus for reduction of unwanted feedback, US Patent 6269165 (2001) J.H. Stott, N.D. Wells: Method and apparatus for reduction of unwanted feedback, US Patent 6269165 (2001)
Metadaten
Titel
Feedback Control in Hearing Aids
verfasst von
Ann Spriet, Dr.
Simon Doclo, Ph.D
Marc Moonen, Prof.
Jan Wouters, Prof.
Copyright-Jahr
2008
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-540-49127-9_48

Neuer Inhalt