Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2018

14.11.2017

Feedforward architectures driven by inhibitory interactions

verfasst von: Yazan N. Billeh, Michael T. Schaub

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Directed information transmission is paramount for many social, physical, and biological systems. For neural systems, scientists have studied this problem under the paradigm of feedforward networks for decades. In most models of feedforward networks, activity is exclusively driven by excitatory neurons and the wiring patterns between them, while inhibitory neurons play only a stabilizing role for the network dynamics. Motivated by recent experimental discoveries of hippocampal circuitry, cortical circuitry, and the diversity of inhibitory neurons throughout the brain, here we illustrate that one can construct such networks even if the connectivity between the excitatory units in the system remains random. This is achieved by endowing inhibitory nodes with a more active role in the network. Our findings demonstrate that apparent feedforward activity can be caused by a much broader network-architectural basis than often assumed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Acsady, L., Katona, I., Martinez-Guijarro, F., Buzsaki, G., Freund, T. (2000). Unusual target selectivity of perisomatic inhibitory cells in the hilar region of the rat hippocampus. Journal of Neuroscience, 20(18), 6907–6919.PubMed Acsady, L., Katona, I., Martinez-Guijarro, F., Buzsaki, G., Freund, T. (2000). Unusual target selectivity of perisomatic inhibitory cells in the hilar region of the rat hippocampus. Journal of Neuroscience, 20(18), 6907–6919.PubMed
Zurück zum Zitat Aertsen, A., Diesmann, M., Gewaltig, M. (1996). Propagation of synchronous spiking activity in feedforward neural networks. Journal of Physiology-Paris, 90(3-4), 243–247.CrossRef Aertsen, A., Diesmann, M., Gewaltig, M. (1996). Propagation of synchronous spiking activity in feedforward neural networks. Journal of Physiology-Paris, 90(3-4), 243–247.CrossRef
Zurück zum Zitat Alonso, A., & Kohler, C. (1982). Evidence for separate projections of hippocampal pyramidal and non-pyramidal neurons to different parts of the septum in the rat brain. Neuroscience Letters, 31(3), 209–214.CrossRefPubMed Alonso, A., & Kohler, C. (1982). Evidence for separate projections of hippocampal pyramidal and non-pyramidal neurons to different parts of the septum in the rat brain. Neuroscience Letters, 31(3), 209–214.CrossRefPubMed
Zurück zum Zitat Alonso, A., & Kohler, C. (1984). A study of the reciprocal connections between the septum and the entorhinal area using anterograde and retrograde axonal transport methods in the rat brain. Journal of Comparative Neurology, 225(3), 327–343.CrossRefPubMed Alonso, A., & Kohler, C. (1984). A study of the reciprocal connections between the septum and the entorhinal area using anterograde and retrograde axonal transport methods in the rat brain. Journal of Comparative Neurology, 225(3), 327–343.CrossRefPubMed
Zurück zum Zitat Bortone, D., Olsen, S., Scanziani, M. (2014). Translaminar inhibitory cells recruited by layer 6 corticothalamic neurons suppress visual cortex. Neuron, 82(2), 474–485.CrossRefPubMedPubMedCentral Bortone, D., Olsen, S., Scanziani, M. (2014). Translaminar inhibitory cells recruited by layer 6 corticothalamic neurons suppress visual cortex. Neuron, 82(2), 474–485.CrossRefPubMedPubMedCentral
Zurück zum Zitat Buzsaki, G., Geisler, C., Henze, D., Wang, X. (2004). Interneuron diversity series: circuit complexity and axon wiring economy of cortical interneurons. Trends in Neurosciences, 27(4), 186–193.CrossRefPubMed Buzsaki, G., Geisler, C., Henze, D., Wang, X. (2004). Interneuron diversity series: circuit complexity and axon wiring economy of cortical interneurons. Trends in Neurosciences, 27(4), 186–193.CrossRefPubMed
Zurück zum Zitat Caputi, A., Melzer, S., Michael, M., Monyer, H. (2013). The long and short of GABAergic neurons. Current Opinion in Neurobiology, 23(2), 179–186.CrossRefPubMed Caputi, A., Melzer, S., Michael, M., Monyer, H. (2013). The long and short of GABAergic neurons. Current Opinion in Neurobiology, 23(2), 179–186.CrossRefPubMed
Zurück zum Zitat Chen, S.X., Kim, A.N., Peters, A.J., Komiyama, T. (2015). Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning. Nature Neuroscience, 18(8), 1109–1115.CrossRefPubMedPubMedCentral Chen, S.X., Kim, A.N., Peters, A.J., Komiyama, T. (2015). Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning. Nature Neuroscience, 18(8), 1109–1115.CrossRefPubMedPubMedCentral
Zurück zum Zitat Diesmann, M., Gewaltig, M., Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature, 402(6761), 529–533.CrossRefPubMed Diesmann, M., Gewaltig, M., Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature, 402(6761), 529–533.CrossRefPubMed
Zurück zum Zitat Freund, T.F., & Antal, M. (1988). GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature, 336(6195), 170–173.CrossRefPubMed Freund, T.F., & Antal, M. (1988). GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature, 336(6195), 170–173.CrossRefPubMed
Zurück zum Zitat Freund, T., & Gulyas, A. (1991). Gabaergic interneurons containing calbindin d28k or somatostatin are major targets of gabaergic basal forebrain afferents in the rat neocortex. Journal of Comparative Neurology, 314(1), 187–199.CrossRefPubMed Freund, T., & Gulyas, A. (1991). Gabaergic interneurons containing calbindin d28k or somatostatin are major targets of gabaergic basal forebrain afferents in the rat neocortex. Journal of Comparative Neurology, 314(1), 187–199.CrossRefPubMed
Zurück zum Zitat Freund, T.F., & Meskenaite, V. (1992). Gamma-aminobutyric acid-containing basal forebrain neurons innervate inhibitory interneurons in the neocortex. Proceedings of the National Academy of Sciences of the United States of America, 89(2), 738–742.CrossRefPubMedPubMedCentral Freund, T.F., & Meskenaite, V. (1992). Gamma-aminobutyric acid-containing basal forebrain neurons innervate inhibitory interneurons in the neocortex. Proceedings of the National Academy of Sciences of the United States of America, 89(2), 738–742.CrossRefPubMedPubMedCentral
Zurück zum Zitat Fu, Y., Tucciarone, J.M., Espinosa, J.S., Sheng, N., Darcy, D.P., Nicoll, R.A., Huang, Z.J., Stryker, M.P. (2014). A cortical circuit for gain control by behavioral state. Cell, 156(6), 1139–1152.CrossRefPubMedPubMedCentral Fu, Y., Tucciarone, J.M., Espinosa, J.S., Sheng, N., Darcy, D.P., Nicoll, R.A., Huang, Z.J., Stryker, M.P. (2014). A cortical circuit for gain control by behavioral state. Cell, 156(6), 1139–1152.CrossRefPubMedPubMedCentral
Zurück zum Zitat Fu, Y., Kaneko, M., Tang, Y., Alvarez-Buylla, A., Stryker, M.P. (2015). A cortical disinhibitory circuit for enhancing adult plasticity. eLife, 4, e05,558.CrossRef Fu, Y., Kaneko, M., Tang, Y., Alvarez-Buylla, A., Stryker, M.P. (2015). A cortical disinhibitory circuit for enhancing adult plasticity. eLife, 4, e05,558.CrossRef
Zurück zum Zitat Gulyas, A., Gorcs, T., TF, F. (1990). Innervation of different peptide-containing neurons in the hippocampus by gabaergic septal afferents. Neuroscience, 37(1), 31–44.CrossRefPubMed Gulyas, A., Gorcs, T., TF, F. (1990). Innervation of different peptide-containing neurons in the hippocampus by gabaergic septal afferents. Neuroscience, 37(1), 31–44.CrossRefPubMed
Zurück zum Zitat Gulyas, A.I., Hajos, N., Katona, I., Freund, T.F. (2003). Interneurons are the local targets of hippocampal inhibitory cells which project to the medial septum. European Journal of Neuroscience, 17(9), 1861–1872.CrossRefPubMed Gulyas, A.I., Hajos, N., Katona, I., Freund, T.F. (2003). Interneurons are the local targets of hippocampal inhibitory cells which project to the medial septum. European Journal of Neuroscience, 17(9), 1861–1872.CrossRefPubMed
Zurück zum Zitat Jinno, S., Klausberger, T., Marton, L.F., Dalezios, Y., Roberts, J.D.B., Fuentealba, P., Bushong, E.A., Henze, D., Buzsáki, G., Somogyi, P. (2007). Neuronal diversity in gabaergic long-range projections from the hippocampus. Journal of Neuroscience, 27(33), 8790–8804.CrossRefPubMedPubMedCentral Jinno, S., Klausberger, T., Marton, L.F., Dalezios, Y., Roberts, J.D.B., Fuentealba, P., Bushong, E.A., Henze, D., Buzsáki, G., Somogyi, P. (2007). Neuronal diversity in gabaergic long-range projections from the hippocampus. Journal of Neuroscience, 27(33), 8790–8804.CrossRefPubMedPubMedCentral
Zurück zum Zitat Karnani, M.M., Jackson, J., Ayzenshtat, I., Tucciarone, J., Manoocheri, K., Snider, W.G., Yuste, R. (2016). Cooperative subnetworks of molecularly similar interneurons in mouse neocortex. Neuron, 90(1), 86–100.CrossRefPubMedPubMedCentral Karnani, M.M., Jackson, J., Ayzenshtat, I., Tucciarone, J., Manoocheri, K., Snider, W.G., Yuste, R. (2016). Cooperative subnetworks of molecularly similar interneurons in mouse neocortex. Neuron, 90(1), 86–100.CrossRefPubMedPubMedCentral
Zurück zum Zitat Kohara, K., Pignatelli, M., Rivest, A.J., Jung, H.Y., Kitamura, T., Suh, J., Frank, D., Kajikawa, K., Mise, N., Obata, Y., Wickersham, I.R., Tonegawa, S. (2014). Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits. Nature Neuroscience, 17(2), 269–279.CrossRefPubMed Kohara, K., Pignatelli, M., Rivest, A.J., Jung, H.Y., Kitamura, T., Suh, J., Frank, D., Kajikawa, K., Mise, N., Obata, Y., Wickersham, I.R., Tonegawa, S. (2014). Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits. Nature Neuroscience, 17(2), 269–279.CrossRefPubMed
Zurück zum Zitat Kopell, N., Ermentrout, G., Whittington, M., Traub, R. (2000). Gamma rhythms and beta rhythms have different synchronization properties. Proceedings of the National Academy of Sciences, 97(4), 1867–1872.CrossRef Kopell, N., Ermentrout, G., Whittington, M., Traub, R. (2000). Gamma rhythms and beta rhythms have different synchronization properties. Proceedings of the National Academy of Sciences, 97(4), 1867–1872.CrossRef
Zurück zum Zitat Lee, A.T., Vogt, D., Rubenstein, J.L., Sohal, V.S. (2014). A class of GABAergic neurons in the prefrontal cortex sends long-range projections to the nucleus accumbens and elicits acute avoidance behavior. The Journal of Neuroscience, 34(35), 11,519–11,525.CrossRef Lee, A.T., Vogt, D., Rubenstein, J.L., Sohal, V.S. (2014). A class of GABAergic neurons in the prefrontal cortex sends long-range projections to the nucleus accumbens and elicits acute avoidance behavior. The Journal of Neuroscience, 34(35), 11,519–11,525.CrossRef
Zurück zum Zitat Lee, J.H., Koch, C., Mihalas, S. (2017). A computational analysis of the function of three inhibitory cell types in contextual visual processing. Frontiers in Computational Neuroscience, 11, 28.CrossRefPubMedPubMedCentral Lee, J.H., Koch, C., Mihalas, S. (2017). A computational analysis of the function of three inhibitory cell types in contextual visual processing. Frontiers in Computational Neuroscience, 11, 28.CrossRefPubMedPubMedCentral
Zurück zum Zitat Litvak, V., Sompolinsky, H., Segev, I., Abeles, M. (2003). On the transmission of rate code in long feedforward networks with excitatory-inhibitory balance. Journal of Neuroscience, 23(7), 3006–3015.PubMed Litvak, V., Sompolinsky, H., Segev, I., Abeles, M. (2003). On the transmission of rate code in long feedforward networks with excitatory-inhibitory balance. Journal of Neuroscience, 23(7), 3006–3015.PubMed
Zurück zum Zitat Llorens-Martin, M., Blazquez-Llorca, L., Benavides-Piccione, R., Rabano, A., Hernandez, F., Avila, J., DeFelipe, J. (2014). Selective alterations of neurons and circuits related to early memory loss in Alzheimer’s disease. Frontiers in Neuroanatomy, 8. Llorens-Martin, M., Blazquez-Llorca, L., Benavides-Piccione, R., Rabano, A., Hernandez, F., Avila, J., DeFelipe, J. (2014). Selective alterations of neurons and circuits related to early memory loss in Alzheimer’s disease. Frontiers in Neuroanatomy, 8.
Zurück zum Zitat Nasrallah, K., Piskorowski, R.A., Chevaleyre, V. (2015). Inhibitory plasticity permits the recruitment of CA2 pyramidal neurons by CA3journal=. Eneuro, 2(4), 1–12.CrossRef Nasrallah, K., Piskorowski, R.A., Chevaleyre, V. (2015). Inhibitory plasticity permits the recruitment of CA2 pyramidal neurons by CA3journal=. Eneuro, 2(4), 1–12.CrossRef
Zurück zum Zitat Olsen, S.R., Bortone, D.S., Adesnik, H., Scanziani, M. (2012). Gain control by layer six in cortical circuits of vision. Nature, 483(7387), 47–52.CrossRefPubMedPubMedCentral Olsen, S.R., Bortone, D.S., Adesnik, H., Scanziani, M. (2012). Gain control by layer six in cortical circuits of vision. Nature, 483(7387), 47–52.CrossRefPubMedPubMedCentral
Zurück zum Zitat Pfeffer, C.K., Xue, M., He, M., Huang, Z.J., Scanziani, M. (2013). Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nature Neuroscience, 16(8), 1068–1076.CrossRefPubMedPubMedCentral Pfeffer, C.K., Xue, M., He, M., Huang, Z.J., Scanziani, M. (2013). Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nature Neuroscience, 16(8), 1068–1076.CrossRefPubMedPubMedCentral
Zurück zum Zitat Pinto, A., Fuentes, C., Paré, D. (2006). Feedforward inhibition regulates perirhinal transmission of neocortical inputs to the entorhinal cortex: ultrastructural study in Guinea pigs. Journal of Comparative Neurology, 495(6), 722–734.CrossRefPubMedPubMedCentral Pinto, A., Fuentes, C., Paré, D. (2006). Feedforward inhibition regulates perirhinal transmission of neocortical inputs to the entorhinal cortex: ultrastructural study in Guinea pigs. Journal of Comparative Neurology, 495(6), 722–734.CrossRefPubMedPubMedCentral
Zurück zum Zitat Pluta, S., Naka, A., Veit, J., Telian, G., Yao, L., Hakim, R., Taylor, D., Adesnik, H. (2015). A direct translaminar inhibitory circuit tunes cortical output. Nature Neuroscience, 18(11), 1631–1640.CrossRefPubMedPubMedCentral Pluta, S., Naka, A., Veit, J., Telian, G., Yao, L., Hakim, R., Taylor, D., Adesnik, H. (2015). A direct translaminar inhibitory circuit tunes cortical output. Nature Neuroscience, 18(11), 1631–1640.CrossRefPubMedPubMedCentral
Zurück zum Zitat Ponzi, A., & Wickens, J. (2010). Sequentially switching cell assemblies in random inhibitory networks of spiking neurons in the striatum. Journal of Neuroscience, 30(17), 5894–5911.CrossRefPubMed Ponzi, A., & Wickens, J. (2010). Sequentially switching cell assemblies in random inhibitory networks of spiking neurons in the striatum. Journal of Neuroscience, 30(17), 5894–5911.CrossRefPubMed
Zurück zum Zitat Rocamora, N., Pascual, M., Acsàdy, L., de Lecea, L., Freund, T.F., Soriano, E. (1996). Expression of ngf and nt3 mrnas in hippocampal interneurons innervated by the gabaergic septohippocampal pathway. Journal of Neuroscience, 16(12), 3991–4004.PubMed Rocamora, N., Pascual, M., Acsàdy, L., de Lecea, L., Freund, T.F., Soriano, E. (1996). Expression of ngf and nt3 mrnas in hippocampal interneurons innervated by the gabaergic septohippocampal pathway. Journal of Neuroscience, 16(12), 3991–4004.PubMed
Zurück zum Zitat Tomioka, R., Okamoto, K., Furuta, T., Fujiyama, F., Iwasato, T., Yanagawa, Y., Obata, K., Kaneko, T., Tamamaki, N. (2005). Demonstration of long-range GABAergic connections distributed throughout the mouse neocortex. European Journal of Neuroscience, 21(6), 1587–1600.CrossRefPubMed Tomioka, R., Okamoto, K., Furuta, T., Fujiyama, F., Iwasato, T., Yanagawa, Y., Obata, K., Kaneko, T., Tamamaki, N. (2005). Demonstration of long-range GABAergic connections distributed throughout the mouse neocortex. European Journal of Neuroscience, 21(6), 1587–1600.CrossRefPubMed
Zurück zum Zitat Toth, K., Borhegyi, Z., Freund, T. (1993). Postsynaptic targets of gabaergic hippocampal neurons in the medial septum-diagonal band of broca complex. Journal of Neuroscience, 13(9), 3712.PubMed Toth, K., Borhegyi, Z., Freund, T. (1993). Postsynaptic targets of gabaergic hippocampal neurons in the medial septum-diagonal band of broca complex. Journal of Neuroscience, 13(9), 3712.PubMed
Zurück zum Zitat van Rossum, M., Turrigiano, G., Nelson, S. (2002). Fast propagation of firing rates through layered networks of noisy neurons. Journal of Neuroscience, 22(5), 1956–1966.PubMed van Rossum, M., Turrigiano, G., Nelson, S. (2002). Fast propagation of firing rates through layered networks of noisy neurons. Journal of Neuroscience, 22(5), 1956–1966.PubMed
Zurück zum Zitat Zhang, S., Xu, M., Kamigaki, T., Hoang Do, J.P., Chang, W.C., Jenvay, S., Miyamichi, K., Luo, L., Dan, Y. (2014). Long-range and local circuits for top-down modulation of visual cortex processing. Science, 345(6197), 660.CrossRefPubMed Zhang, S., Xu, M., Kamigaki, T., Hoang Do, J.P., Chang, W.C., Jenvay, S., Miyamichi, K., Luo, L., Dan, Y. (2014). Long-range and local circuits for top-down modulation of visual cortex processing. Science, 345(6197), 660.CrossRefPubMed
Metadaten
Titel
Feedforward architectures driven by inhibitory interactions
verfasst von
Yazan N. Billeh
Michael T. Schaub
Publikationsdatum
14.11.2017
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2018
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-017-0669-1

Weitere Artikel der Ausgabe 1/2018

Journal of Computational Neuroscience 1/2018 Zur Ausgabe