Skip to main content

2023 | OriginalPaper | Buchkapitel

27. Feinstfasern

verfasst von : Dieter Veit

Erschienen in: Fasern

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

Die Abb. 27.1 zeigt die Einteilung von Fasern in Abhängigkeit vom Faderdurchmesser bzw. der Querschnittsfläche. Die Feinheit von mit konventionellen Verfahren erzeugten Fasern endet bei ca. 10 μm, was in etwa 1 dtex entspricht.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ali, U., Abbass, A., Khurshid, F., Aslam, S., & Waqar, A. (2017). Needleless electrospinning using a flat wheel spinneret. Journal of Engineered Fibers and Fabric, 12(3), 81–89. SAGE Publishing, Thousand Oaks.CrossRef Ali, U., Abbass, A., Khurshid, F., Aslam, S., & Waqar, A. (2017). Needleless electrospinning using a flat wheel spinneret. Journal of Engineered Fibers and Fabric, 12(3), 81–89. SAGE Publishing, Thousand Oaks.CrossRef
Zurück zum Zitat Amna, R., Ali, K., Malik, M. I., & Shamsah, S. I. (2020). A Brief review of electrospinning of polymer nanofibers: History and Main applications. Journal of New Materials for Electrochemical Systems, 23(3), 151–163.CrossRef Amna, R., Ali, K., Malik, M. I., & Shamsah, S. I. (2020). A Brief review of electrospinning of polymer nanofibers: History and Main applications. Journal of New Materials for Electrochemical Systems, 23(3), 151–163.CrossRef
Zurück zum Zitat Blachowicz, T., & Ehrmann, A. (2020). Most recent developments in electrospun magnetic nanofibers: A review. Journal of Engineered Fibers and Fabrics, (15), 1–14. SAGE Publishing, Thousand Oaks. Blachowicz, T., & Ehrmann, A. (2020). Most recent developments in electrospun magnetic nanofibers: A review. Journal of Engineered Fibers and Fabrics, (15), 1–14. SAGE Publishing, Thousand Oaks.
Zurück zum Zitat Brown, T. D., Dalton, P. D., & Hutmacher, D. W. (2011). Direct writing by way of melt electrospinning. Advanced Materials, (23), 5651–5657. Wiley, Hoboken. Brown, T. D., Dalton, P. D., & Hutmacher, D. W. (2011). Direct writing by way of melt electrospinning. Advanced Materials, (23), 5651–5657. Wiley, Hoboken.
Zurück zum Zitat Bunyan, N., Chen, I., Chen, J., & Farboodmanesh, S. (2006). Electrostatic effects on electrospun fiber deposition and alignment. In D. H. Reneker & H. Fong (Hrsg.), Polymeric nanofibers (ACS Symposium Series 918). ACS Publications. Bunyan, N., Chen, I., Chen, J., & Farboodmanesh, S. (2006). Electrostatic effects on electrospun fiber deposition and alignment. In D. H. Reneker & H. Fong (Hrsg.), Polymeric nanofibers (ACS Symposium Series 918). ACS Publications.
Zurück zum Zitat Chapman, B. S., Mishra, S. R., & Tracy, J. B. (2019). Direct electrospinning of titania nanofibers with ethanol. Dalton Transactions, 48, 12822–12827.CrossRef Chapman, B. S., Mishra, S. R., & Tracy, J. B. (2019). Direct electrospinning of titania nanofibers with ethanol. Dalton Transactions, 48, 12822–12827.CrossRef
Zurück zum Zitat Cooley, J. F. (1900). Apparatus for electrically dispersing fluids (US Patent 692,631). Cooley, J. F. (1900). Apparatus for electrically dispersing fluids (US Patent 692,631).
Zurück zum Zitat Dalton, P. D., Grafahrend, D., Klinkhammer, K., Klee, D., & Möller, M. (2007). Electrospinning of polymer melts: phenomenological observations. Polymer, 48(23), 6823–6833. Elsevier, Amsterdam.CrossRef Dalton, P. D., Grafahrend, D., Klinkhammer, K., Klee, D., & Möller, M. (2007). Electrospinning of polymer melts: phenomenological observations. Polymer, 48(23), 6823–6833. Elsevier, Amsterdam.CrossRef
Zurück zum Zitat Dalton, P. D., Vaquette, C., Farrugia, B. L., Dargaville, T. R., Brown, T. D., & Hutmacher, D. W. (2013). Electrospinning and additive manufacturing: Converging technologies. Biomaterials Science, (1) The Royal Society of Chemistry, 171–185. Dalton, P. D., Vaquette, C., Farrugia, B. L., Dargaville, T. R., Brown, T. D., & Hutmacher, D. W. (2013). Electrospinning and additive manufacturing: Converging technologies. Biomaterials Science, (1) The Royal Society of Chemistry, 171–185.
Zurück zum Zitat Deitzel, J. M., Kleinmeyer, J., Harris, D., & Beck Tan, N. C. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42, 261–272. Elsevier, Amsterdam.CrossRef Deitzel, J. M., Kleinmeyer, J., Harris, D., & Beck Tan, N. C. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42, 261–272. Elsevier, Amsterdam.CrossRef
Zurück zum Zitat Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35(2–3), 151–160. Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35(2–3), 151–160.
Zurück zum Zitat Filatov, Y., Budyka, A., & Kirichenko, V. (2007). Electrospinning of micro- and nanofibers: Fundamentals and applications in separation and filtration processes. Begell House, Inc. Filatov, Y., Budyka, A., & Kirichenko, V. (2007). Electrospinning of micro- and nanofibers: Fundamentals and applications in separation and filtration processes. Begell House, Inc.
Zurück zum Zitat Florczak, S., Lorson, T., Zheng, T., Mrlik, M., Hutmacher, D. W., Higgins, M. J., Luxenhofer, R., & Dalton, P. D. (2019). Melt electrowriting of electroactive poly(vinylidene difluoride) fibers. Polymer International, 68(4), 735–745. Wiley Online Library.CrossRef Florczak, S., Lorson, T., Zheng, T., Mrlik, M., Hutmacher, D. W., Higgins, M. J., Luxenhofer, R., & Dalton, P. D. (2019). Melt electrowriting of electroactive poly(vinylidene difluoride) fibers. Polymer International, 68(4), 735–745. Wiley Online Library.CrossRef
Zurück zum Zitat Formhals, A. (1934), US Patent. 1,975,504. Formhals, A. (1934), US Patent. 1,975,504.
Zurück zum Zitat Gilbert, W. (1600). De Magnete Magnetcisque Corporibus, et de Magno Magnete Tellure (On the Magnet, Magnetick Bodies also, and on the Great Magnet the Earth; a new Physiology, demonstrated by many arguments & Experiments). The Chiswick Press. Gilbert, W. (1600). De Magnete Magnetcisque Corporibus, et de Magno Magnete Tellure (On the Magnet, Magnetick Bodies also, and on the Great Magnet the Earth; a new Physiology, demonstrated by many arguments & Experiments). The Chiswick Press.
Zurück zum Zitat Hacker, C. (2014). Anlagenentwicklung für das Elektroschmelzspinnen von Feinfaservliesstoffen für die Abwasseraufbereitung. Dissertation am Institut für Textiltechnik der RWTH Aachen, Shaker, . Hacker, C. (2014). Anlagenentwicklung für das Elektroschmelzspinnen von Feinfaservliesstoffen für die Abwasseraufbereitung. Dissertation am Institut für Textiltechnik der RWTH Aachen, Shaker, .
Zurück zum Zitat Hacker, C., Jungbecker, P., Gries, T., & Thomas, H. (2009). Mehrdüsen-Elektrospinnen aus der Polymerschmelze – Die Entwicklung zum Upscaling. Proceedings of the Chemnitzer Textiltechnik-Tagung (12), Chemnitz. Hacker, C., Jungbecker, P., Gries, T., & Thomas, H. (2009). Mehrdüsen-Elektrospinnen aus der Polymerschmelze – Die Entwicklung zum Upscaling. Proceedings of the Chemnitzer Textiltechnik-Tagung (12), Chemnitz.
Zurück zum Zitat Hagiwaba, K., Oji-Machi, O., Ku, K. (1929), Japan Patent. 1,699,615. Hagiwaba, K., Oji-Machi, O., Ku, K. (1929), Japan Patent. 1,699,615.
Zurück zum Zitat Hutmacher, D. W., & Dalton, P. D. (2011). Melt electrospinning. Chemistry – An Asian Journal, (6), 44–56. Wiley VCH. Hutmacher, D. W., & Dalton, P. D. (2011). Melt electrospinning. Chemistry – An Asian Journal, (6), 44–56. Wiley VCH.
Zurück zum Zitat Kameoka, J., Orth, R., Yang, Y., Czaplewski, D., Mathers, R., Coates, G., & Craighead, H. (2003). A Scanning tip electrospinning source for deposition of oriented nanofibers. Nanotechnology, 14, 1124–1129. IOP Publishing.CrossRef Kameoka, J., Orth, R., Yang, Y., Czaplewski, D., Mathers, R., Coates, G., & Craighead, H. (2003). A Scanning tip electrospinning source for deposition of oriented nanofibers. Nanotechnology, 14, 1124–1129. IOP Publishing.CrossRef
Zurück zum Zitat Katta, P., Alessandro, M., Ramsier, R. D., & Chase, G. G. (2004). Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Letters, 4, 2215–2218. ACS Publications.CrossRef Katta, P., Alessandro, M., Ramsier, R. D., & Chase, G. G. (2004). Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Letters, 4, 2215–2218. ACS Publications.CrossRef
Zurück zum Zitat Keithley, J. F. (1999). The story of electrical and magnetic measurements. Wiley.CrossRef Keithley, J. F. (1999). The story of electrical and magnetic measurements. Wiley.CrossRef
Zurück zum Zitat Koombhongse, S., Liu, W., & Reneker, D. H. (2001). Flat polymer ribbons and other shapes by electrospinning. Journal of Polymer Science, 39, 216–223. Wiley. Koombhongse, S., Liu, W., & Reneker, D. H. (2001). Flat polymer ribbons and other shapes by electrospinning. Journal of Polymer Science, 39, 216–223. Wiley.
Zurück zum Zitat Kopp, A., Smeets, R., Gosau, M., Kröger, N., Fuesta, S., Köpf, M., Kruse, M., Krieger, J., Rutkowski, R., Henningsen, A., & Burg, S. (2020). Effect of process parameters on additive-free electrospinning of regenerated silk fibroin nonwovens. Bioactive Materials, 5, 241–252.CrossRef Kopp, A., Smeets, R., Gosau, M., Kröger, N., Fuesta, S., Köpf, M., Kruse, M., Krieger, J., Rutkowski, R., Henningsen, A., & Burg, S. (2020). Effect of process parameters on additive-free electrospinning of regenerated silk fibroin nonwovens. Bioactive Materials, 5, 241–252.CrossRef
Zurück zum Zitat Kruse, M., Greuel, M., Kreimendahl, F., Schneider, T., Bauer, B., Gries, T., & Jockenhövel, S. (2018). Electro-spun PLA-PEG-yarns for tissue engineering applications. Biomedical Engineering/Biomedizinische Technik, 63(3), 231–243. de Gruyter.CrossRef Kruse, M., Greuel, M., Kreimendahl, F., Schneider, T., Bauer, B., Gries, T., & Jockenhövel, S. (2018). Electro-spun PLA-PEG-yarns for tissue engineering applications. Biomedical Engineering/Biomedizinische Technik, 63(3), 231–243. de Gruyter.CrossRef
Zurück zum Zitat Kruse, M., Walter, P., Bauer, B., Rütten, S., Schaefer, K., Plange, N., Gries, T., Jockenhövel, S., & Füst, M. (2017). Electro-Spun membranes as scaffolds for human corneal endothelial cells. Current Eye Research, 43(1), 1–11. Taylor & Francis Group.CrossRef Kruse, M., Walter, P., Bauer, B., Rütten, S., Schaefer, K., Plange, N., Gries, T., Jockenhövel, S., & Füst, M. (2017). Electro-Spun membranes as scaffolds for human corneal endothelial cells. Current Eye Research, 43(1), 1–11. Taylor & Francis Group.CrossRef
Zurück zum Zitat Larrondo, L., & Manley, R. S. J. (1981a). Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. Journal of Polymer Science Part B-Polymer Physics, 19, 909–920.CrossRef Larrondo, L., & Manley, R. S. J. (1981a). Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. Journal of Polymer Science Part B-Polymer Physics, 19, 909–920.CrossRef
Zurück zum Zitat Larrondo, L., & Manley, R. S. J. (1981b). Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet. Journal of Polymer Science Part B-Polymer Physics, 19, 921–932.CrossRef Larrondo, L., & Manley, R. S. J. (1981b). Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet. Journal of Polymer Science Part B-Polymer Physics, 19, 921–932.CrossRef
Zurück zum Zitat Larrondo, L., & Manley, R. S. J. (1981c). Electrostatic fiber spinning from polymer melts. III. Electrostatic deformation of a pendant drop of polymer melt. Journal of Polymer Science Part B-Polymer Physics, 19, 933–940.CrossRef Larrondo, L., & Manley, R. S. J. (1981c). Electrostatic fiber spinning from polymer melts. III. Electrostatic deformation of a pendant drop of polymer melt. Journal of Polymer Science Part B-Polymer Physics, 19, 933–940.CrossRef
Zurück zum Zitat Lee, S., & Obendorf, K. (2006). Developing protective textile materials as barriers to liquid penetration using melt-electrospinning. Journal of Applied Polymer Science, 102, 3430–3437.CrossRef Lee, S., & Obendorf, K. (2006). Developing protective textile materials as barriers to liquid penetration using melt-electrospinning. Journal of Applied Polymer Science, 102, 3430–3437.CrossRef
Zurück zum Zitat Li, D., Wang, Y., & Xia, Y. (2003). Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Letters, 3, 1167–1171. ACS Publications.CrossRef Li, D., Wang, Y., & Xia, Y. (2003). Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Letters, 3, 1167–1171. ACS Publications.CrossRef
Zurück zum Zitat Li, D., Wang, Y., & Xia, Y. (2004). Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Advanced Materials, 16, 361–366. Wiley.CrossRef Li, D., Wang, Y., & Xia, Y. (2004). Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Advanced Materials, 16, 361–366. Wiley.CrossRef
Zurück zum Zitat Molnar, K., Vas, L. M., & Czigany, T. (2011). Determination of tensile strength of electrospun single nanofibers through modeling tensile behavior of the nanofibrous mat. Composites Part B: Engineering, 43(1), 15–21.CrossRef Molnar, K., Vas, L. M., & Czigany, T. (2011). Determination of tensile strength of electrospun single nanofibers through modeling tensile behavior of the nanofibrous mat. Composites Part B: Engineering, 43(1), 15–21.CrossRef
Zurück zum Zitat Morton, W. J. (1902). Method of dispersing fluids. US Patent 705,691. Morton, W. J. (1902). Method of dispersing fluids. US Patent 705,691.
Zurück zum Zitat Niu, H., Wang, X., & Lin, T. (2012). Upward needleless electrospinning of nanofibers. Journal of Engineered Fibers and Fabrics, Special Issue – Fibers, 17–22. Sage. Niu, H., Wang, X., & Lin, T. (2012). Upward needleless electrospinning of nanofibers. Journal of Engineered Fibers and Fabrics, Special Issue – Fibers, 17–22. Sage.
Zurück zum Zitat Norton, C. L. (1936). Method of and apparatus for producing fibrous or filamentary material. US Patent 2,048,651. Norton, C. L. (1936). Method of and apparatus for producing fibrous or filamentary material. US Patent 2,048,651.
Zurück zum Zitat Pham, Q. P., Sharma, U., & Mikos, A. G. (2006). Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Engineering, 12(5), 1197–1211. Mary Ann Liebert, Inc.CrossRef Pham, Q. P., Sharma, U., & Mikos, A. G. (2006). Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Engineering, 12(5), 1197–1211. Mary Ann Liebert, Inc.CrossRef
Zurück zum Zitat Reneker, D. H., Yarin, A., Evans, E. A., Kataphinan, W., Rangkupan, R., Liu, W., Koombhongse, S., & Xu, H. (2001). Electrospinning and Nanofibers. In New frontiers in fiber science, proceedings of the the fiber society meeting. Reneker, D. H., Yarin, A., Evans, E. A., Kataphinan, W., Rangkupan, R., Liu, W., Koombhongse, S., & Xu, H. (2001). Electrospinning and Nanofibers. In New frontiers in fiber science, proceedings of the the fiber society meeting.
Zurück zum Zitat Schneiders, T., Vogel, L., & Gries, T. (2021). Crosslinking electrospun chitosan nanfibers with genipin for medical applications and tissue engineering. Nanofiber Applications and Related Technologies Conference (NART). Schneiders, T., Vogel, L., & Gries, T. (2021). Crosslinking electrospun chitosan nanfibers with genipin for medical applications and tissue engineering. Nanofiber Applications and Related Technologies Conference (NART).
Zurück zum Zitat Shin, Y. M., Homan, M. M., Brenner, M. P., & Rutledge, G. C. (2001). Experimental characterisation of electrospinning: The electrically forced jet and instabilities. Polymer, 42, 9955–9967. Elsevier.CrossRef Shin, Y. M., Homan, M. M., Brenner, M. P., & Rutledge, G. C. (2001). Experimental characterisation of electrospinning: The electrically forced jet and instabilities. Polymer, 42, 9955–9967. Elsevier.CrossRef
Zurück zum Zitat Sun, D., Chang, C., Li, S., & Lin, L. (2006). Near-field electrospinning. Nano Letters, 6(4), 839–842. ACS Publications.CrossRef Sun, D., Chang, C., Li, S., & Lin, L. (2006). Near-field electrospinning. Nano Letters, 6(4), 839–842. ACS Publications.CrossRef
Zurück zum Zitat Sundaray, B., Subramanian, V., & Natarajan, T. S. (2004). Electrospinning of continuous aligned polymer fibers. Applied Physics Letters, 84, 1222–1224. AIP Publishing LLC.CrossRef Sundaray, B., Subramanian, V., & Natarajan, T. S. (2004). Electrospinning of continuous aligned polymer fibers. Applied Physics Letters, 84, 1222–1224. AIP Publishing LLC.CrossRef
Zurück zum Zitat Taylor, G. I. (1964). Disintegration of water drops in an electric field. Proceedings of the Royal Society A, 280(1382), 383–397.MATH Taylor, G. I. (1964). Disintegration of water drops in an electric field. Proceedings of the Royal Society A, 280(1382), 383–397.MATH
Zurück zum Zitat Taylor, G. I. (1966). The force exerted by an electric field on a long cylindrical conductor. Proceedings of the Royal Society A, 291(1425), 145–158. Taylor, G. I. (1966). The force exerted by an electric field on a long cylindrical conductor. Proceedings of the Royal Society A, 291(1425), 145–158.
Zurück zum Zitat Taylor, G. I. (1969). Electrically driven jets. Proceedings of the Royal Society A, 313(1515), 453–475. Taylor, G. I. (1969). Electrically driven jets. Proceedings of the Royal Society A, 313(1515), 453–475.
Zurück zum Zitat Teo, W. E., & Ramakrishna, S. (2006). A review on electrospinning design and nanofibre assemblies. Nanotechnology, 17, R89–R106.CrossRef Teo, W. E., & Ramakrishna, S. (2006). A review on electrospinning design and nanofibre assemblies. Nanotechnology, 17, R89–R106.CrossRef
Zurück zum Zitat Theron, A., Zussman, E., & Yarin, A. L. (2001). Electrostatic field-assisted alignment of electrospun nanofibers. Nanotechnology, 12(2001), 384–390. IOP Publishing.CrossRef Theron, A., Zussman, E., & Yarin, A. L. (2001). Electrostatic field-assisted alignment of electrospun nanofibers. Nanotechnology, 12(2001), 384–390. IOP Publishing.CrossRef
Zurück zum Zitat Theron, S. A., Yarin, A. L., Zussman, E., & Kroll, E. (2005). Multiple jets in electrospinning: Experiment and modeling. Polymer, 46, 2889–2899. Elsevier.CrossRef Theron, S. A., Yarin, A. L., Zussman, E., & Kroll, E. (2005). Multiple jets in electrospinning: Experiment and modeling. Polymer, 46, 2889–2899. Elsevier.CrossRef
Zurück zum Zitat Tucker, N., Stanger, J. J., Staiger, M. P., Razzaq, H., & Hofman, K. (2012). The history of the science and technology of electrospinning from 1600 to 1995. Journal of Engineered Fibers and Fabrics, 7, 63–73. SAGE Publishing.CrossRef Tucker, N., Stanger, J. J., Staiger, M. P., Razzaq, H., & Hofman, K. (2012). The history of the science and technology of electrospinning from 1600 to 1995. Journal of Engineered Fibers and Fabrics, 7, 63–73. SAGE Publishing.CrossRef
Zurück zum Zitat Wienecke, S. (2007). Herstellung komplexer, dreidimensionaler Fasermatten mit definierter Faserorientierung durch Elektrospinning. Diplomarbeit am Institut für Textiltechnik der RWTH Aachen und am Institut für Mehrphasenprozesse und Zentrum für Biomedizintechnik der Universität Hannover. Wienecke, S. (2007). Herstellung komplexer, dreidimensionaler Fasermatten mit definierter Faserorientierung durch Elektrospinning. Diplomarbeit am Institut für Textiltechnik der RWTH Aachen und am Institut für Mehrphasenprozesse und Zentrum für Biomedizintechnik der Universität Hannover.
Zurück zum Zitat Yarin, A. L., Koombhongse, S., & Reneker, D. H. (2001). Bending instability in electrospinning of nanofibers. Journal of Applied Physics, 89(5), 3018–3026. American Institute of Physics.CrossRef Yarin, A. L., Koombhongse, S., & Reneker, D. H. (2001). Bending instability in electrospinning of nanofibers. Journal of Applied Physics, 89(5), 3018–3026. American Institute of Physics.CrossRef
Zurück zum Zitat Yarin, A. L., & Zussman, E. (2004). Upward needleless electrospinning of multiple nanofibers. Polymer, 45, 2977–2980. Elsevier.CrossRef Yarin, A. L., & Zussman, E. (2004). Upward needleless electrospinning of multiple nanofibers. Polymer, 45, 2977–2980. Elsevier.CrossRef
Zurück zum Zitat Zhang, X. (2014). Fundamentals of fiber science. DEStech Publications Inc. Zhang, X. (2014). Fundamentals of fiber science. DEStech Publications Inc.
Metadaten
Titel
Feinstfasern
verfasst von
Dieter Veit
Copyright-Jahr
2023
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-64469-0_27

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.