Skip to main content
Erschienen in: Optical and Quantum Electronics 9/2018

01.09.2018

Ferrite loaded graphene based plasmonic waveguide

verfasst von: Alireza Dolatabady, Nosrat Granpayeh, Mohsen Salehi

Erschienen in: Optical and Quantum Electronics | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we investigate surface plasmon (SP) propagation characteristics in a ferrite loaded graphene based waveguide biased by an external magnetic flux density. Propagation lengths and dispersion features of the excited SPs can be actively tailored via applying external electro- and magneto-static bias fields. Nonreciprocal property of the structure risen from magneto-optic behavior of the ferrite is clear, in vicinity of the Larmor frequency, according to the derived dispersion equation. The structure is investigated analytically through basic electromagnetic theory. The results can be utilized in design of nonreciprocal components.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Asgari, S., Dolatabady, A., Granpayeh, N.: Tunable midinfrared wavelength selective structures based on resonator with antisymmetric parallel graphene pair. Opt. Eng. 56, 067102 (2017)ADSCrossRef Asgari, S., Dolatabady, A., Granpayeh, N.: Tunable midinfrared wavelength selective structures based on resonator with antisymmetric parallel graphene pair. Opt. Eng. 56, 067102 (2017)ADSCrossRef
Zurück zum Zitat Britnell, L., Gorbachev, R.V., Geim, A.K., Ponomarenko, L.A., Mishchenko, A., Greenaway, M.T., Fromhold, T.M., Novoselov, K.S., Eaves, L.: Resonant tunneling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1–5 (2013)CrossRef Britnell, L., Gorbachev, R.V., Geim, A.K., Ponomarenko, L.A., Mishchenko, A., Greenaway, M.T., Fromhold, T.M., Novoselov, K.S., Eaves, L.: Resonant tunneling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1–5 (2013)CrossRef
Zurück zum Zitat Che, W., Ji, X.J., Yung, E.K.N.: Miniaturized planar ferrite junction circulator in the form of substrate-integrated waveguide. Int. J. RF Microw. Comput. Aided 18, 8–13 (2008)CrossRef Che, W., Ji, X.J., Yung, E.K.N.: Miniaturized planar ferrite junction circulator in the form of substrate-integrated waveguide. Int. J. RF Microw. Comput. Aided 18, 8–13 (2008)CrossRef
Zurück zum Zitat Chin, J.Y., Steinle, T., Wehlus, T., Dregely, D., Weiss, T., Belotelov, V.L., Stritzker, B., Giessen, H.: Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation. Nat. Commun. 11, 1599 (2013)CrossRef Chin, J.Y., Steinle, T., Wehlus, T., Dregely, D., Weiss, T., Belotelov, V.L., Stritzker, B., Giessen, H.: Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation. Nat. Commun. 11, 1599 (2013)CrossRef
Zurück zum Zitat Crassee, I., Levallois, J., Walter, A.L., Ostler, M., Bostwick, A., Rotenberg, E., Seyller, T., Marel, D.V.D., Kuzmenko, B.: Giant Faraday rotation in single- and multilayer graphene. Nat. Phys. Lett. 7, 48–51 (2011)ADSCrossRef Crassee, I., Levallois, J., Walter, A.L., Ostler, M., Bostwick, A., Rotenberg, E., Seyller, T., Marel, D.V.D., Kuzmenko, B.: Giant Faraday rotation in single- and multilayer graphene. Nat. Phys. Lett. 7, 48–51 (2011)ADSCrossRef
Zurück zum Zitat Dmitriev, V., Castro, W., Nascimento, C.: THz dynamically controllable graphene Y-circulator. In: 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Aguas de Lindoia, Brazil, 27–30 Aug 2017 Dmitriev, V., Castro, W., Nascimento, C.: THz dynamically controllable graphene Y-circulator. In: 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Aguas de Lindoia, Brazil, 27–30 Aug 2017
Zurück zum Zitat Dolatabady, A., Granpayeh, N.: Tunable far-infrared plasmonically induced transparency in graphene based nano-structures. J. Opt. 20, 075001 (2018)ADSCrossRef Dolatabady, A., Granpayeh, N.: Tunable far-infrared plasmonically induced transparency in graphene based nano-structures. J. Opt. 20, 075001 (2018)ADSCrossRef
Zurück zum Zitat Dolatabady, A., Asgari, S., Granpayeh, N.: Tunable mid-infrared nanoscale graphene based refractive index sensor. IEEE Sens. J. 18, 569–574 (2017)ADSCrossRef Dolatabady, A., Asgari, S., Granpayeh, N.: Tunable mid-infrared nanoscale graphene based refractive index sensor. IEEE Sens. J. 18, 569–574 (2017)ADSCrossRef
Zurück zum Zitat Fallahi, A., Carrier, J.P.: Manipulation of giant Faraday rotation in graphene metasurfaces. Appl. Phys. Lett. 101, 231605 (2012)ADSCrossRef Fallahi, A., Carrier, J.P.: Manipulation of giant Faraday rotation in graphene metasurfaces. Appl. Phys. Lett. 101, 231605 (2012)ADSCrossRef
Zurück zum Zitat Fan, F., Guo, Z., Bai, J.J., Wang, X.H., Chang, S.J.: Magnetic photonic crystals for terahertz tunable filter and multifunctional polarization controller. J. Opt. Soc. Am. B 28, 697–702 (2011)ADSCrossRef Fan, F., Guo, Z., Bai, J.J., Wang, X.H., Chang, S.J.: Magnetic photonic crystals for terahertz tunable filter and multifunctional polarization controller. J. Opt. Soc. Am. B 28, 697–702 (2011)ADSCrossRef
Zurück zum Zitat Fan, F., Chang, S.J., Niu, C., Hou, Y., Wang, X.H.: Magnetically tunable silicon-ferrite photonic crystals for terahertz circulator. Opt. Commun. 285, 3763–3769 (2012)ADSCrossRef Fan, F., Chang, S.J., Niu, C., Hou, Y., Wang, X.H.: Magnetically tunable silicon-ferrite photonic crystals for terahertz circulator. Opt. Commun. 285, 3763–3769 (2012)ADSCrossRef
Zurück zum Zitat Gan, C.H., Chu, H.S., Li, E.P.: Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Phys. Rev. B 85, 125431 (2012)ADSCrossRef Gan, C.H., Chu, H.S., Li, E.P.: Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Phys. Rev. B 85, 125431 (2012)ADSCrossRef
Zurück zum Zitat Hui, Y.Q., Wu, Z.H., Li, L.Y., Ye, W.Q., Jie, Z.: An artificially garnet crystal materials using in terahertz waveguide. Chin. Phys. Lett. 25, 3957–3960 (2008)ADSCrossRef Hui, Y.Q., Wu, Z.H., Li, L.Y., Ye, W.Q., Jie, Z.: An artificially garnet crystal materials using in terahertz waveguide. Chin. Phys. Lett. 25, 3957–3960 (2008)ADSCrossRef
Zurück zum Zitat Khatir, M., Granpayeh, N.: An ultra-compact and high speed magneto-optic surface plasmon switch. IEEE J. Lightwave Technol. 31, 1045–1054 (2013)ADSCrossRef Khatir, M., Granpayeh, N.: An ultra-compact and high speed magneto-optic surface plasmon switch. IEEE J. Lightwave Technol. 31, 1045–1054 (2013)ADSCrossRef
Zurück zum Zitat Komandin, G.A., Torgashev, V.I., Volkov, A.A., Porodinkov, O.E., Spektor, I.E., Bush, A.A.: Optical properties of BiFeO3 ceramics in the frequency range 0.3–30.0 THz. Phys. Solid State 52, 734–743 (2010)CrossRef Komandin, G.A., Torgashev, V.I., Volkov, A.A., Porodinkov, O.E., Spektor, I.E., Bush, A.A.: Optical properties of BiFeO3 ceramics in the frequency range 0.3–30.0 THz. Phys. Solid State 52, 734–743 (2010)CrossRef
Zurück zum Zitat Li, H.J., Wang, L.L., Sun, B., Huang, Z.R., Zhai, X.: Controlling mid-infrared surface plasmon polaritons in the parallel graphene pair. Appl. Phys. Express 7, 125101 (2014)ADSCrossRef Li, H.J., Wang, L.L., Sun, B., Huang, Z.R., Zhai, X.: Controlling mid-infrared surface plasmon polaritons in the parallel graphene pair. Appl. Phys. Express 7, 125101 (2014)ADSCrossRef
Zurück zum Zitat Liu, F., Qian, C., Chong, Y.D.: Directional excitation of graphene surface plasmons. Opt. Express 23, 2383–2391 (2015)ADSCrossRef Liu, F., Qian, C., Chong, Y.D.: Directional excitation of graphene surface plasmons. Opt. Express 23, 2383–2391 (2015)ADSCrossRef
Zurück zum Zitat Montoya, J., Hensley, J., Parameswaran, K., Allen, M., Ram, R.: Surface plasmon isolator based on nonreciprocal coupling. J. Appl. Phys. 106, 1063 (2009)CrossRef Montoya, J., Hensley, J., Parameswaran, K., Allen, M., Ram, R.: Surface plasmon isolator based on nonreciprocal coupling. J. Appl. Phys. 106, 1063 (2009)CrossRef
Zurück zum Zitat Otsuji, T., Popov, V., Ryzhii, V.: Active graphene plasmonics for terahertz device applications. J. Phys. D Appl. Phys. 47, 094006 (2014)ADSCrossRef Otsuji, T., Popov, V., Ryzhii, V.: Active graphene plasmonics for terahertz device applications. J. Phys. D Appl. Phys. 47, 094006 (2014)ADSCrossRef
Zurück zum Zitat Petráček, J.: Nonreciprocal switching in nonlinear plasmonic couplers with loss and gain. Opt. Quant. Electron. 48, 446 (2016)CrossRef Petráček, J.: Nonreciprocal switching in nonlinear plasmonic couplers with loss and gain. Opt. Quant. Electron. 48, 446 (2016)CrossRef
Zurück zum Zitat Poumirol, J.M., Liu, P.Q., Slipchenko, T.M., Nikitin, A.Y., Moreno, L.M., Faist, J., Kuzmenko, A.B.: Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene. Nat. Commun. 8, 14626 (2017)ADSCrossRef Poumirol, J.M., Liu, P.Q., Slipchenko, T.M., Nikitin, A.Y., Moreno, L.M., Faist, J., Kuzmenko, A.B.: Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene. Nat. Commun. 8, 14626 (2017)ADSCrossRef
Zurück zum Zitat Pozar, D.M.: Microwave Engineering, 3rd edn. Wiley, New York (2005) Pozar, D.M.: Microwave Engineering, 3rd edn. Wiley, New York (2005)
Zurück zum Zitat Qin, C., Wang, B., Long, H., Lu, P.: Non-reciprocal phase shift and mode modulation in dynamic graphene waveguides. J. Lightwave Technol. 34, 1–7 (2016)CrossRef Qin, C., Wang, B., Long, H., Lu, P.: Non-reciprocal phase shift and mode modulation in dynamic graphene waveguides. J. Lightwave Technol. 34, 1–7 (2016)CrossRef
Zurück zum Zitat Qiu, T., Wang, J., Li, Y., Wang, J., Qu, S.: Broadband circulator based on spoof surface plasmon polaritons. J. Phys. D Appl. Phys. 49, 355002 (2016)CrossRef Qiu, T., Wang, J., Li, Y., Wang, J., Qu, S.: Broadband circulator based on spoof surface plasmon polaritons. J. Phys. D Appl. Phys. 49, 355002 (2016)CrossRef
Zurück zum Zitat Rodrigue, G.P.: A generation of microwave ferrite devices. Proc. IEEE 76, 121–137 (1988)ADSCrossRef Rodrigue, G.P.: A generation of microwave ferrite devices. Proc. IEEE 76, 121–137 (1988)ADSCrossRef
Zurück zum Zitat Rodriguez, B.S.: Graphene-insulator-graphene active plasmonic terahertz devices. Appl. Phys. Lett. 103, 123109 (2013)ADSCrossRef Rodriguez, B.S.: Graphene-insulator-graphene active plasmonic terahertz devices. Appl. Phys. Lett. 103, 123109 (2013)ADSCrossRef
Zurück zum Zitat Shin, J.S., Kim, J.T.: Broadband silicon optical modulator using a graphene-integrated hybrid plasmonic waveguide. J. Phys. D Appl. Phys. 26, 365201 (2015) Shin, J.S., Kim, J.T.: Broadband silicon optical modulator using a graphene-integrated hybrid plasmonic waveguide. J. Phys. D Appl. Phys. 26, 365201 (2015)
Zurück zum Zitat Sounas, D.L., Caloz, C.: Electromagnetic nonreciprocity and gyrotropy of graphene. Appl. Phys. Lett. 98, 021911 (2011)ADSCrossRef Sounas, D.L., Caloz, C.: Electromagnetic nonreciprocity and gyrotropy of graphene. Appl. Phys. Lett. 98, 021911 (2011)ADSCrossRef
Zurück zum Zitat Tamagnone, M., Moldovan, C., Poumirol, J.M., Kuzmenko, A.B., Ionescu, A.M., Mosig, J.R., Carrier, J.P.: Near optimal graphene terahertz non-reciprocal isolator. Nat. Commun. 7, 11216 (2016)ADSCrossRef Tamagnone, M., Moldovan, C., Poumirol, J.M., Kuzmenko, A.B., Ionescu, A.M., Mosig, J.R., Carrier, J.P.: Near optimal graphene terahertz non-reciprocal isolator. Nat. Commun. 7, 11216 (2016)ADSCrossRef
Zurück zum Zitat Tsakmakidis, K.: Non-reciprocal plasmonics. Nat. Mater. 12, 378 (2013)CrossRef Tsakmakidis, K.: Non-reciprocal plasmonics. Nat. Mater. 12, 378 (2013)CrossRef
Zurück zum Zitat Tymchenko, M., Nikitin, A.Y., Martin-Moreno, L.: Faraday rotation due to excitation of magnetoplasmons in graphene microribbons. ASC Nano 7, 9780–9787 (2013)CrossRef Tymchenko, M., Nikitin, A.Y., Martin-Moreno, L.: Faraday rotation due to excitation of magnetoplasmons in graphene microribbons. ASC Nano 7, 9780–9787 (2013)CrossRef
Zurück zum Zitat Ubrig, N., Crassee, I., Levallois, J., Nedoliuk, I.O., Fromm, F., Kaiser, M., Seyller, T., Kuzmenko, A.B.: Fabry–Perot enhanced Faraday rotation in graphene. Opt. Express 21, 24736–24741 (2013)ADSCrossRef Ubrig, N., Crassee, I., Levallois, J., Nedoliuk, I.O., Fromm, F., Kaiser, M., Seyller, T., Kuzmenko, A.B.: Fabry–Perot enhanced Faraday rotation in graphene. Opt. Express 21, 24736–24741 (2013)ADSCrossRef
Zurück zum Zitat Umamaheswari, C., Shanmuga sunder, D., Raja, A.S.: Exploration of photonic crystal circulator based on gyromagnetic properties and scaling of ferrite materials. Opt. Commun. 382, 186–195 (2017)ADSCrossRef Umamaheswari, C., Shanmuga sunder, D., Raja, A.S.: Exploration of photonic crystal circulator based on gyromagnetic properties and scaling of ferrite materials. Opt. Commun. 382, 186–195 (2017)ADSCrossRef
Zurück zum Zitat Xu, G., Cao, M., Liu, C., Sun, J., Pan, T.: Tunable surface plasmon-polaritons in a gyroelectric slab sandwiched between two graphene layers. Opt. Commun. 366, 112–118 (2016)ADSCrossRef Xu, G., Cao, M., Liu, C., Sun, J., Pan, T.: Tunable surface plasmon-polaritons in a gyroelectric slab sandwiched between two graphene layers. Opt. Commun. 366, 112–118 (2016)ADSCrossRef
Zurück zum Zitat Yao, G., Ling, F., Yue, J., Luo, Q., Yao, J.: Dynamically tunable graphene plasmon-induced transparency in the terahertz region. J. Lightwave Technol. 34, 3937–3942 (2016) Yao, G., Ling, F., Yue, J., Luo, Q., Yao, J.: Dynamically tunable graphene plasmon-induced transparency in the terahertz region. J. Lightwave Technol. 34, 3937–3942 (2016)
Zurück zum Zitat Ye, W.Q., Wu, Z.H., Hui, Y.Q., Sheng, L., Gang, X.D., Quan, Y.J.: Fe-doped polycrystalline CeO2 as terahertz optical material. Chin. Phys. Lett. 26, 047803 (2009)ADSCrossRef Ye, W.Q., Wu, Z.H., Hui, Y.Q., Sheng, L., Gang, X.D., Quan, Y.J.: Fe-doped polycrystalline CeO2 as terahertz optical material. Chin. Phys. Lett. 26, 047803 (2009)ADSCrossRef
Zurück zum Zitat Zhai, M.L., Peng, H.L., Wang, X.H., Wang, X., Chen, Z., Yin, W.Y.: The conformal HIE-FDTD method for simulating tunable graphene-based couplers for THz applications. IEEE Trans. Terahertz Sci. 5, 368–376 (2015)CrossRef Zhai, M.L., Peng, H.L., Wang, X.H., Wang, X., Chen, Z., Yin, W.Y.: The conformal HIE-FDTD method for simulating tunable graphene-based couplers for THz applications. IEEE Trans. Terahertz Sci. 5, 368–376 (2015)CrossRef
Zurück zum Zitat Zhao, P., Feenstra, R.M., Gu, G.: SymFET: a proposed symmetric graphene tunneling field-effect transistor. IEEE Trans. Electron Devices 60, 951–957 (2013)ADSCrossRef Zhao, P., Feenstra, R.M., Gu, G.: SymFET: a proposed symmetric graphene tunneling field-effect transistor. IEEE Trans. Electron Devices 60, 951–957 (2013)ADSCrossRef
Zurück zum Zitat Zhu, B., Ren, G., Gao, Y., Wu, B., Wang, Q., Wan, C., Jian, S.: Graphene plasmons isolator based on non-reciprocal coupling. Opt. Express 23, 16071–16083 (2015)ADSCrossRef Zhu, B., Ren, G., Gao, Y., Wu, B., Wang, Q., Wan, C., Jian, S.: Graphene plasmons isolator based on non-reciprocal coupling. Opt. Express 23, 16071–16083 (2015)ADSCrossRef
Zurück zum Zitat Zhuang, H., Kong, F., Li, K., Sheng, S.: Plasmonic bandpass filter based on graphene nanoribbon. Appl. Opt. 54, 2558–2564 (2015)ADSCrossRef Zhuang, H., Kong, F., Li, K., Sheng, S.: Plasmonic bandpass filter based on graphene nanoribbon. Appl. Opt. 54, 2558–2564 (2015)ADSCrossRef
Metadaten
Titel
Ferrite loaded graphene based plasmonic waveguide
verfasst von
Alireza Dolatabady
Nosrat Granpayeh
Mohsen Salehi
Publikationsdatum
01.09.2018
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 9/2018
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-018-1604-z

Weitere Artikel der Ausgabe 9/2018

Optical and Quantum Electronics 9/2018 Zur Ausgabe

Neuer Inhalt