Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2016

29.12.2015

Ferrite-Martensite Band Formation During the Intercritical Annealing

verfasst von: S. A. Etesami, M. H. Enayati

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microstructural evolution during the intercritical annealing at 740 and 770 °C for 120-900 s in a low-carbon low-alloy steel from the initial martensitic matrix was studied by electron microscopy equipped with energy dispersive x-ray spectroscopy and x-ray diffraction. It was seen that during the intercritical annealing, the martensitic structure changes to the tempered martensite with carbides. The results depicted that the temperature and time of intercritical annealing influence significantly the distribution and amount of the formed carbides. Two types of austenite morphology were identified to grow simultaneously, i.e., globular and acicular. A longer annealing time led to the coarse globular and thick acicular austenite morphology. The austenite with globular morphology nucleated preferably at prior austenite grain boundary triple and quadruple junctions. The austenite with globular and acicular morphology was developed in Mn-rich and -poor regions, respectively. The globular austenite morphology intensified the banded microstructure of ferrite-martensite dual-phase steel, whereas the acicular austenite morphology led to a more isotropic microstructure. The experimental results illustrated that the intercritical temperature is a significant factor which can contribute to intensify the banded ferrite-martensite microstructure. The volume fractions of austenite with globular and acicular morphology were quantitatively measured. The volume fraction of globular to acicular morphology of austenite was high and low at 770 and 740 °C, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S.A. Etesami, M.H. Enayati, A. Taherizadeh, and B. Sadeghian, The Influence of Volume Fraction of Martensite and Ferrite Grain Size on Ultimate Tensile Strength and Maximum Uniform True Strain of Dual Phase Steel, T. Indian I. Metals. doi:10.1007/s12666-015-0739-x S.A. Etesami, M.H. Enayati, A. Taherizadeh, and B. Sadeghian, The Influence of Volume Fraction of Martensite and Ferrite Grain Size on Ultimate Tensile Strength and Maximum Uniform True Strain of Dual Phase Steel, T. Indian I. Metals. doi:10.​1007/​s12666-015-0739-x
2.
Zurück zum Zitat S. Kim and S. Lee, Effects of Martensite Morphology and Volume Fraction on Quasi-static and Dynamic Deformation Behavior of Dual-Phase Steel, Metall. Mater. Trans. A, 2000, 31A, p 1753–1760CrossRef S. Kim and S. Lee, Effects of Martensite Morphology and Volume Fraction on Quasi-static and Dynamic Deformation Behavior of Dual-Phase Steel, Metall. Mater. Trans. A, 2000, 31A, p 1753–1760CrossRef
3.
Zurück zum Zitat K. Nakajima, T. Urabe, Y. Hosoya, S. Kamiishi, T. Miyata, and N. Takeda, Influence of Microstructural Morphology and Restraining on Short Fatigue Crack Propagation in Dual-Phase Steels, ISIJ Int., 2001, 41, p 298–304CrossRef K. Nakajima, T. Urabe, Y. Hosoya, S. Kamiishi, T. Miyata, and N. Takeda, Influence of Microstructural Morphology and Restraining on Short Fatigue Crack Propagation in Dual-Phase Steels, ISIJ Int., 2001, 41, p 298–304CrossRef
4.
Zurück zum Zitat A. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck, Transformation-Induced Geometrically Necessary, Dislocation-Based Flow Curve Modeling of Dual-Phase Steels, Metall. Trans. A, 2012, 43A, p 3850–3869CrossRef A. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck, Transformation-Induced Geometrically Necessary, Dislocation-Based Flow Curve Modeling of Dual-Phase Steels, Metall. Trans. A, 2012, 43A, p 3850–3869CrossRef
5.
Zurück zum Zitat N. Nakada, B. Arakawa, K.S. Park, T. Tsuchiyama, and S. Takaki, Dual Phase Structure Formed by Partial Reversion of Cold-Deformed Martensite, Mater. Sci. Eng., A, 2012, 553, p 128–133CrossRef N. Nakada, B. Arakawa, K.S. Park, T. Tsuchiyama, and S. Takaki, Dual Phase Structure Formed by Partial Reversion of Cold-Deformed Martensite, Mater. Sci. Eng., A, 2012, 553, p 128–133CrossRef
6.
Zurück zum Zitat M. Calcagnott, Y. Adachi, D. Ponge, and D. Raabe, Deformation and Fracture Mechanisms in Fine- and Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels and the Effect of Aging, Acta Mater., 2011, 59, p 658–670CrossRef M. Calcagnott, Y. Adachi, D. Ponge, and D. Raabe, Deformation and Fracture Mechanisms in Fine- and Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels and the Effect of Aging, Acta Mater., 2011, 59, p 658–670CrossRef
7.
Zurück zum Zitat R. Song, D. Ponge, and D. Raabe, Influence of Mn Content on the Microstructure and Mechanical Properties of Ultrafine Grained C-Mn Steels, ISIJ Int., 2005, 45, p 1721CrossRef R. Song, D. Ponge, and D. Raabe, Influence of Mn Content on the Microstructure and Mechanical Properties of Ultrafine Grained C-Mn Steels, ISIJ Int., 2005, 45, p 1721CrossRef
8.
Zurück zum Zitat M. Calcagnotto, D. Ponge, and D. Raabe, Ultrafine Grained Ferrite/Martensite Dual Phase Steel Fabricated by Large Strain Warm Deformation and Subsequent Intercritical Annealing, ISIJ Int., 2008, 48, p 1096CrossRef M. Calcagnotto, D. Ponge, and D. Raabe, Ultrafine Grained Ferrite/Martensite Dual Phase Steel Fabricated by Large Strain Warm Deformation and Subsequent Intercritical Annealing, ISIJ Int., 2008, 48, p 1096CrossRef
9.
Zurück zum Zitat L. Shi, Z. Yan, Y. Liu, X. Yang, Z. Qiao, B. Ning, and H. Li, Development of Ferrite/Bainite Bands and Study of Bainite Transformation Retardation in HSLA Steel During Continuous Cooling, Met. Mater. Int., 2014, 20, p 19–25CrossRef L. Shi, Z. Yan, Y. Liu, X. Yang, Z. Qiao, B. Ning, and H. Li, Development of Ferrite/Bainite Bands and Study of Bainite Transformation Retardation in HSLA Steel During Continuous Cooling, Met. Mater. Int., 2014, 20, p 19–25CrossRef
10.
Zurück zum Zitat W. Xu, P.E.J. Rivera-Diaz-Del-Castillo, and S.V.D. Zwagg, Ferrite/Pearlite Band Prevention on Dual Phase and TRIP Steel: Model Development, ISIJ Int., 2005, 45, p 380–387CrossRef W. Xu, P.E.J. Rivera-Diaz-Del-Castillo, and S.V.D. Zwagg, Ferrite/Pearlite Band Prevention on Dual Phase and TRIP Steel: Model Development, ISIJ Int., 2005, 45, p 380–387CrossRef
11.
Zurück zum Zitat T.F. Majka, D.K. Matlock, and G. Krauss, Development of Microstructural Banding in Low-Alloy Steel with Simulated Mn Segregation, Metall. Mater. Trans. A, 2002, 33A, p 1627–1637CrossRef T.F. Majka, D.K. Matlock, and G. Krauss, Development of Microstructural Banding in Low-Alloy Steel with Simulated Mn Segregation, Metall. Mater. Trans. A, 2002, 33A, p 1627–1637CrossRef
12.
Zurück zum Zitat J.D. Verhoeven, A Review of Microsegregation Induced Banding Phenomena in Steels, J. Mater. Eng. Perform., 2000, 9, p 286–296CrossRef J.D. Verhoeven, A Review of Microsegregation Induced Banding Phenomena in Steels, J. Mater. Eng. Perform., 2000, 9, p 286–296CrossRef
13.
Zurück zum Zitat F. Khalid, M. Farooque, and A. Khan, Role of Ferrite/Pearlite Banded Structure and Segregation on Mechanical Properties of Microalloyed Hot Rolled Steel, Mater. Sci. Technol., 1999, 15, p 1209–1215CrossRef F. Khalid, M. Farooque, and A. Khan, Role of Ferrite/Pearlite Banded Structure and Segregation on Mechanical Properties of Microalloyed Hot Rolled Steel, Mater. Sci. Technol., 1999, 15, p 1209–1215CrossRef
14.
Zurück zum Zitat J. Eckert, P. Howell, and S. Thompson, Banding and the Nature of Large, Irregular Pearlite Nodules in a Hot-Rolled Low-Alloy Plate Steel: A Second Report, J. Mater. Sci., 1993, 28, p 4412–4420CrossRef J. Eckert, P. Howell, and S. Thompson, Banding and the Nature of Large, Irregular Pearlite Nodules in a Hot-Rolled Low-Alloy Plate Steel: A Second Report, J. Mater. Sci., 1993, 28, p 4412–4420CrossRef
15.
Zurück zum Zitat B. Krebs, L. Germain, A. Hazotte, and M. Gouné, Banded Structure in Dual Phase Steels in Relation with the Austenite-to-ferrite Transformation Mechanisms, J. Mater. Sci., 2011, 46, p 7026–7038CrossRef B. Krebs, L. Germain, A. Hazotte, and M. Gouné, Banded Structure in Dual Phase Steels in Relation with the Austenite-to-ferrite Transformation Mechanisms, J. Mater. Sci., 2011, 46, p 7026–7038CrossRef
16.
Zurück zum Zitat M. Asadiasadabad, M. Goodarzi, and S. Kheirandish, Kinetics of Austenite Formation in Dual Phase Steels, ISIJ Int., 2008, 48, p 1251–1255CrossRef M. Asadiasadabad, M. Goodarzi, and S. Kheirandish, Kinetics of Austenite Formation in Dual Phase Steels, ISIJ Int., 2008, 48, p 1251–1255CrossRef
17.
Zurück zum Zitat J. Han and Y.K. Lee, The Effects of the Heating Rate on the Reverse Transformation Mechanism and the Phase Stability of Reverted Austenite in Medium Mn Steels, Acta Mater., 2014, 67, p 354CrossRef J. Han and Y.K. Lee, The Effects of the Heating Rate on the Reverse Transformation Mechanism and the Phase Stability of Reverted Austenite in Medium Mn Steels, Acta Mater., 2014, 67, p 354CrossRef
18.
Zurück zum Zitat M. Tokizane, N. Matsumura, K. Tsuzaki, T. Maki, and I. Tamura, Recrystallization and Formation of Austenite in Deformed Lath Martensitic Structure of Low Carbon Steels, Metall. Trans. A, 1982, 13, p 1379–1388CrossRef M. Tokizane, N. Matsumura, K. Tsuzaki, T. Maki, and I. Tamura, Recrystallization and Formation of Austenite in Deformed Lath Martensitic Structure of Low Carbon Steels, Metall. Trans. A, 1982, 13, p 1379–1388CrossRef
19.
Zurück zum Zitat S. Takaki, S. Iizuka, K. Tomimura, and Y. Tokunaga, Role of Carbide Recovery Process of 0. 2% Carbon Lath Martensitic Structure, J. Jpn. Inst. Met., 1991, 32, p 207–213 S. Takaki, S. Iizuka, K. Tomimura, and Y. Tokunaga, Role of Carbide Recovery Process of 0. 2% Carbon Lath Martensitic Structure, J. Jpn. Inst. Met., 1991, 32, p 207–213
20.
Zurück zum Zitat S. Takaki, S. Iizuka, K. Tomimura, and Y. Tokunaga, Influence of Cold Working on Recovery and Recrystallization of Lath Martensite in 0 2% C Steel, J. Jpn. Inst. Met., 1992, 33, p 577–584 S. Takaki, S. Iizuka, K. Tomimura, and Y. Tokunaga, Influence of Cold Working on Recovery and Recrystallization of Lath Martensite in 0 2% C Steel, J. Jpn. Inst. Met., 1992, 33, p 577–584
21.
Zurück zum Zitat R.N. Caron and G. Krauss, The Tempering of Fe-C Lath Martensite, Metall. Trans., 1972, 3, p 2381–2389CrossRef R.N. Caron and G. Krauss, The Tempering of Fe-C Lath Martensite, Metall. Trans., 1972, 3, p 2381–2389CrossRef
22.
Zurück zum Zitat M. Natori, Y. Futamura, T. Tsuchiyama, and S. Takaki, Difference in Recrystallization Behavior Between Lath Martensite and Deformed Ferrite in Ultralow Carbon Steel, Scr. Mater., 2005, 53, p 603–608CrossRef M. Natori, Y. Futamura, T. Tsuchiyama, and S. Takaki, Difference in Recrystallization Behavior Between Lath Martensite and Deformed Ferrite in Ultralow Carbon Steel, Scr. Mater., 2005, 53, p 603–608CrossRef
23.
Zurück zum Zitat J.J. Yi, I.S. Kim, and H.S. Choi, Austenitization During Intercritical Annealing of an Fe-C-Si-Mn Dual-Phase Steel, Metall. Trans. A, 1985, 16, p 1237–1245CrossRef J.J. Yi, I.S. Kim, and H.S. Choi, Austenitization During Intercritical Annealing of an Fe-C-Si-Mn Dual-Phase Steel, Metall. Trans. A, 1985, 16, p 1237–1245CrossRef
24.
Zurück zum Zitat U.R. Lenel and R.W.K. Honeycombe, Morphology and Crystallography of Austenite Formed During Intercritical Annealing, Mater. Sci. Technol., 1984, 18, p 503–510 U.R. Lenel and R.W.K. Honeycombe, Morphology and Crystallography of Austenite Formed During Intercritical Annealing, Mater. Sci. Technol., 1984, 18, p 503–510
25.
Zurück zum Zitat X. Liaoa, X. Wanga, Z. Guoa, M. Wangb, and Ronga Y. WubY, Microstructures in a Resistance Spot Welded High Strength Dual Phase Steel, Mater. Charact., 2010, 61, p 341–346CrossRef X. Liaoa, X. Wanga, Z. Guoa, M. Wangb, and Ronga Y. WubY, Microstructures in a Resistance Spot Welded High Strength Dual Phase Steel, Mater. Charact., 2010, 61, p 341–346CrossRef
26.
Zurück zum Zitat S. Rajasekhara and P.J. Ferreira, Martensite-Austenite Phase Transformation Kinetics in an Ultrafine-Grained Metastable Austenitic Stainless Steel, Acta Mater., 2011, 59, p 738–748CrossRef S. Rajasekhara and P.J. Ferreira, Martensite-Austenite Phase Transformation Kinetics in an Ultrafine-Grained Metastable Austenitic Stainless Steel, Acta Mater., 2011, 59, p 738–748CrossRef
27.
Zurück zum Zitat C.Y. Wang, J. Shi, W.Q. Cao, and H. Dong, Characterization of Microstructure Obtained by Quenching and Partitioning Process in Low Alloy Martensitic Steel, Mater. Sci. Eng., A, 2010, 527, p 3442–3449CrossRef C.Y. Wang, J. Shi, W.Q. Cao, and H. Dong, Characterization of Microstructure Obtained by Quenching and Partitioning Process in Low Alloy Martensitic Steel, Mater. Sci. Eng., A, 2010, 527, p 3442–3449CrossRef
28.
Zurück zum Zitat T. Hara, N. Maruyama, Y. Shinohara, H. Asahi, G. Shigesato, M. Sugiyama, and T. Koseki, Abnormal α to γ Transformation Behavior of Steels with a Martensite and Bainite Microstructure at a Slow Reheating Rate, ISIJ Int., 2009, 49, p 1792–1800CrossRef T. Hara, N. Maruyama, Y. Shinohara, H. Asahi, G. Shigesato, M. Sugiyama, and T. Koseki, Abnormal α to γ Transformation Behavior of Steels with a Martensite and Bainite Microstructure at a Slow Reheating Rate, ISIJ Int., 2009, 49, p 1792–1800CrossRef
29.
Zurück zum Zitat S. Matsuda and Y. Okamura, Later Stage of Reverse Transformation in Low-Carbon Low Alloy Steel, ISIJ Int., 1974, 14, p 363 S. Matsuda and Y. Okamura, Later Stage of Reverse Transformation in Low-Carbon Low Alloy Steel, ISIJ Int., 1974, 14, p 363
30.
Zurück zum Zitat M.R. Plichta and H.I. Aaronson, Influence of Alloying Elements Upon the Morphology of Austenite Formed from Martensite in Fe-C-X Alloys, Metall. Trans., 1974, 5, p 2611–2613CrossRef M.R. Plichta and H.I. Aaronson, Influence of Alloying Elements Upon the Morphology of Austenite Formed from Martensite in Fe-C-X Alloys, Metall. Trans., 1974, 5, p 2611–2613CrossRef
31.
Zurück zum Zitat W.J. Kaluba, R. Taillard, and J. Foch, The Bainitic Mechanism of Austenite Formation During Rapid Heating, Acta Mater., 1998, 46, p 5917–5927CrossRef W.J. Kaluba, R. Taillard, and J. Foch, The Bainitic Mechanism of Austenite Formation During Rapid Heating, Acta Mater., 1998, 46, p 5917–5927CrossRef
32.
Zurück zum Zitat N. Nakada, T. Tsuchiyama, S. Takaki, and S. Hashizume, Variant Selection of Reversed Austenite in Lath Martensite, ISIJ Int., 2007, 47, p 1527–1532CrossRef N. Nakada, T. Tsuchiyama, S. Takaki, and S. Hashizume, Variant Selection of Reversed Austenite in Lath Martensite, ISIJ Int., 2007, 47, p 1527–1532CrossRef
33.
Zurück zum Zitat N. Nakada, T. Tsuchiyama, S. Takaki, and N. Miyano, Temperature Dependence of Austenite Nucleation Behavior from Lath Martensite, ISIJ Int., 2011, 51, p 299–304CrossRef N. Nakada, T. Tsuchiyama, S. Takaki, and N. Miyano, Temperature Dependence of Austenite Nucleation Behavior from Lath Martensite, ISIJ Int., 2011, 51, p 299–304CrossRef
34.
Zurück zum Zitat W.C. Jeong and C.H. Kim, Formation of Austenite from a Ferrite-Pearlite Microstructure During Intercritical Annealing, J. Mater. Sci., 1985, 20, p 4392–4398CrossRef W.C. Jeong and C.H. Kim, Formation of Austenite from a Ferrite-Pearlite Microstructure During Intercritical Annealing, J. Mater. Sci., 1985, 20, p 4392–4398CrossRef
Metadaten
Titel
Ferrite-Martensite Band Formation During the Intercritical Annealing
verfasst von
S. A. Etesami
M. H. Enayati
Publikationsdatum
29.12.2015
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-015-1831-4

Weitere Artikel der Ausgabe 2/2016

Journal of Materials Engineering and Performance 2/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.