Skip to main content
Erschienen in: Journal of Materials Science 2/2018

03.10.2017 | Energy materials

Ferroelectric electrocatalysts: a new class of materials for oxygen evolution reaction with synergistic effect of ferroelectric polarization

verfasst von: H. S. Kushwaha, Aditi Halder, Rahul Vaish

Erschienen in: Journal of Materials Science | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We exploit the role of the remnant polarization to improve the electrocatalytic performance of ferroelectric perovskite. We report cost-effective, noble metal-free, ferroelectric electrocatalyst Bi0.5Na0.5TiO3 and the effect of remnant polarization on oxygen evolution reaction involved in alkaline fuel cells. The forward poling decreases the Tafel slope from 85 mv/decade to 39 mv/decade and also increases the mass activity by threefold. The effect of polarization on flat-band potential and the Schottky barrier between electrode and electrolyte contributes to enhanced electrochemical activity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110(11):6474–6502CrossRef Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110(11):6474–6502CrossRef
2.
Zurück zum Zitat Service RF (2009) Transportation research. Hydrogen cars: fad or the future? Science (New York, NY) 324(5932):1257–1259CrossRef Service RF (2009) Transportation research. Hydrogen cars: fad or the future? Science (New York, NY) 324(5932):1257–1259CrossRef
3.
Zurück zum Zitat Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci 103(43):15729–15735CrossRef Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci 103(43):15729–15735CrossRef
4.
Zurück zum Zitat Turner JA (2004) Sustainable hydrogen production. Science 305(5686):972–974CrossRef Turner JA (2004) Sustainable hydrogen production. Science 305(5686):972–974CrossRef
5.
Zurück zum Zitat Mallouk TE (2013) Water electrolysis: divide and conquer. Nat Chem 5(5):362–363CrossRef Mallouk TE (2013) Water electrolysis: divide and conquer. Nat Chem 5(5):362–363CrossRef
6.
7.
Zurück zum Zitat Smith RD, Prévot MS, Fagan RD et al (2013) Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340(6128):60–63CrossRef Smith RD, Prévot MS, Fagan RD et al (2013) Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340(6128):60–63CrossRef
8.
Zurück zum Zitat Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321(5892):1072–1075CrossRef Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321(5892):1072–1075CrossRef
9.
Zurück zum Zitat Yeo BS, Bell AT (2011) Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J Am Chem Soc 133(14):5587–5593CrossRef Yeo BS, Bell AT (2011) Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J Am Chem Soc 133(14):5587–5593CrossRef
10.
Zurück zum Zitat Trasatti S (1980) Electrodes of conductive metallic oxides, vol 2. Elsevier Scientific Software, Amsterdam Trasatti S (1980) Electrodes of conductive metallic oxides, vol 2. Elsevier Scientific Software, Amsterdam
11.
Zurück zum Zitat Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y (2012) Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 3(3):399–404CrossRef Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y (2012) Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 3(3):399–404CrossRef
12.
Zurück zum Zitat Davidson C, Kissel G, Srinivasan S (1982) Electrode kinetics of the oxygen evolution reaction at NiCo2O4 from 30% KOH.: dependence on temperature. J Electroanal Chem Interfacial Electrochem 132:129–135CrossRef Davidson C, Kissel G, Srinivasan S (1982) Electrode kinetics of the oxygen evolution reaction at NiCo2O4 from 30% KOH.: dependence on temperature. J Electroanal Chem Interfacial Electrochem 132:129–135CrossRef
13.
Zurück zum Zitat Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061):1383–1385CrossRef Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061):1383–1385CrossRef
14.
Zurück zum Zitat Guo Y, Tong Y, Chen P et al (2015) Engineering the electronic state of a perovskite electrocatalyst for synergistically enhanced oxygen evolution reaction. Adv Mater 27(39):5989–5994CrossRef Guo Y, Tong Y, Chen P et al (2015) Engineering the electronic state of a perovskite electrocatalyst for synergistically enhanced oxygen evolution reaction. Adv Mater 27(39):5989–5994CrossRef
15.
Zurück zum Zitat Guerrini E, Chen H, Trasatti S (2007) Oxygen evolution on aged IrO x/Ti electrodes in alkaline solutions. J Solid State Electr 11(7):939–945CrossRef Guerrini E, Chen H, Trasatti S (2007) Oxygen evolution on aged IrO x/Ti electrodes in alkaline solutions. J Solid State Electr 11(7):939–945CrossRef
16.
Zurück zum Zitat Shao Z, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431(7005):170–173CrossRef Shao Z, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431(7005):170–173CrossRef
17.
Zurück zum Zitat Zhu Y, Sunarso J, Zhou W, Jiang S, Shao Z (2014) High-performance SrNb 0.1 Co 0.9− x Fe x O 3− δ perovskite cathodes for low-temperature solid oxide fuel cells. J Mater Chem A 2(37):15454–15462CrossRef Zhu Y, Sunarso J, Zhou W, Jiang S, Shao Z (2014) High-performance SrNb 0.1 Co 0.9− x Fe x O 3− δ perovskite cathodes for low-temperature solid oxide fuel cells. J Mater Chem A 2(37):15454–15462CrossRef
18.
Zurück zum Zitat Han X, Hu Y, Yang J, Cheng F, Chen J (2014) Porous perovskite CaMnO3 as an electrocatalyst for rechargeable Li–O2 batteries. Chem Commun 50(12):1497–1499CrossRef Han X, Hu Y, Yang J, Cheng F, Chen J (2014) Porous perovskite CaMnO3 as an electrocatalyst for rechargeable Li–O2 batteries. Chem Commun 50(12):1497–1499CrossRef
19.
Zurück zum Zitat Xu JJ, Xu D, Wang ZL, Wang HG, Zhang LL, Zhang XB (2013) Synthesis of perovskite‐based porous La0. 75Sr0. 25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium–oxygen batteries. Angew Chem Int Edit 52(14):3887–3890CrossRef Xu JJ, Xu D, Wang ZL, Wang HG, Zhang LL, Zhang XB (2013) Synthesis of perovskite‐based porous La0. 75Sr0. 25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium–oxygen batteries. Angew Chem Int Edit 52(14):3887–3890CrossRef
20.
Zurück zum Zitat Grimaud A, May KJ, Carlton CE et al (2013) Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat Commun 4:2439–2445CrossRef Grimaud A, May KJ, Carlton CE et al (2013) Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat Commun 4:2439–2445CrossRef
21.
Zurück zum Zitat Zhou W, Sunarso J (2013) Enhancing bi-functional electrocatalytic activity of perovskite by temperature shock: a case study of LaNiO3− δ . J Phys Chem Lett 4(17):2982–2988CrossRef Zhou W, Sunarso J (2013) Enhancing bi-functional electrocatalytic activity of perovskite by temperature shock: a case study of LaNiO3− δ . J Phys Chem Lett 4(17):2982–2988CrossRef
22.
Zurück zum Zitat Zhao Y, Xu L, Mai L et al (2012) Hierarchical mesoporous perovskite La0. 5Sr0. 5CoO2. 91 nanowires with ultrahigh capacity for Li-air batteries. Proc Natl Acad Sci 109(48):19569–19574CrossRef Zhao Y, Xu L, Mai L et al (2012) Hierarchical mesoporous perovskite La0. 5Sr0. 5CoO2. 91 nanowires with ultrahigh capacity for Li-air batteries. Proc Natl Acad Sci 109(48):19569–19574CrossRef
23.
Zurück zum Zitat Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y (2011) Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat Chem 3(7):546–550CrossRef Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y (2011) Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat Chem 3(7):546–550CrossRef
24.
Zurück zum Zitat Matsumoto Y, Yoneyama H, Tamura H (1977) Catalytic activity for electrochemical reduction of oxygen of lanthanum nickel oxide and related oxides. J Electroanal Chem Interfacial Electrochem 79(2):319–326CrossRef Matsumoto Y, Yoneyama H, Tamura H (1977) Catalytic activity for electrochemical reduction of oxygen of lanthanum nickel oxide and related oxides. J Electroanal Chem Interfacial Electrochem 79(2):319–326CrossRef
25.
Zurück zum Zitat Jung JI, Jeong HY, Kim MG, Nam G, Park J, Cho J (2015) Fabrication of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3–δ catalysts with enhanced electrochemical performance by removing an inherent heterogeneous surface film layer. Adv Mater 27(2):266–271CrossRef Jung JI, Jeong HY, Kim MG, Nam G, Park J, Cho J (2015) Fabrication of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3–δ catalysts with enhanced electrochemical performance by removing an inherent heterogeneous surface film layer. Adv Mater 27(2):266–271CrossRef
26.
Zurück zum Zitat Yang X, Su X, Shen M et al (2012) Enhancement of photocurrent in ferroelectric films via the incorporation of narrow bandgap nanoparticles. Adv Mater 24(9):1202–1208CrossRef Yang X, Su X, Shen M et al (2012) Enhancement of photocurrent in ferroelectric films via the incorporation of narrow bandgap nanoparticles. Adv Mater 24(9):1202–1208CrossRef
27.
Zurück zum Zitat Kakekhani A, Ismail-Beigi S (2016) Polarization-driven catalysis via ferroelectric oxide surfaces. Phys Chem Chem Phys 18(29):19676–19695CrossRef Kakekhani A, Ismail-Beigi S (2016) Polarization-driven catalysis via ferroelectric oxide surfaces. Phys Chem Chem Phys 18(29):19676–19695CrossRef
28.
Zurück zum Zitat Cui Y, Briscoe J, Dunn S (2013) Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3-x influence on the carrier separation and Stern layer formation. Chem Mater 25(21):4215–4223CrossRef Cui Y, Briscoe J, Dunn S (2013) Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3-x influence on the carrier separation and Stern layer formation. Chem Mater 25(21):4215–4223CrossRef
29.
Zurück zum Zitat Watanabe Y, Okano M, Masuda A (2001) Surface conduction on insulating BaTiO3 crystal suggesting an intrinsic surface electron layer. Phys Rev Lett 86(2):332–335CrossRef Watanabe Y, Okano M, Masuda A (2001) Surface conduction on insulating BaTiO3 crystal suggesting an intrinsic surface electron layer. Phys Rev Lett 86(2):332–335CrossRef
30.
Zurück zum Zitat Yang W-C, Rodriguez BJ, Gruverman A, Nemanich R (2004) Polarization-dependent electron affinity of LiNbO3 surfaces. Appl Phys Lett 85:2316–2318CrossRef Yang W-C, Rodriguez BJ, Gruverman A, Nemanich R (2004) Polarization-dependent electron affinity of LiNbO3 surfaces. Appl Phys Lett 85:2316–2318CrossRef
31.
Zurück zum Zitat Sones CL, Mailis S, Brocklesby WS, Eason RW, Owen JR (2002) Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations. J Mater Chem 12(2):295–298CrossRef Sones CL, Mailis S, Brocklesby WS, Eason RW, Owen JR (2002) Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations. J Mater Chem 12(2):295–298CrossRef
32.
Zurück zum Zitat Park S, Lee CW, Kang M-G et al (2014) A ferroelectric photocatalyst for enhancing hydrogen evolution: polarized particulate suspension. Phys Chem Chem Phys 16(22):10408–10413CrossRef Park S, Lee CW, Kang M-G et al (2014) A ferroelectric photocatalyst for enhancing hydrogen evolution: polarized particulate suspension. Phys Chem Chem Phys 16(22):10408–10413CrossRef
33.
Zurück zum Zitat Garra J, Vohs J, Bonnell D (2009) The effect of ferroelectric polarization on the interaction of water and methanol with the surface of LiNbO 3 (0001). Surf Sci 603(8):1106–1114CrossRef Garra J, Vohs J, Bonnell D (2009) The effect of ferroelectric polarization on the interaction of water and methanol with the surface of LiNbO 3 (0001). Surf Sci 603(8):1106–1114CrossRef
34.
Zurück zum Zitat Kakekhani A, Ismail-Beigi S, Altman EI (2015) Ferroelectrics: A pathway to switchable surface chemistry and catalysis. Surf Sci 650:302–316CrossRef Kakekhani A, Ismail-Beigi S, Altman EI (2015) Ferroelectrics: A pathway to switchable surface chemistry and catalysis. Surf Sci 650:302–316CrossRef
35.
Zurück zum Zitat Yuan Y, Reece TJ, Sharma P et al (2011) Efficiency enhancement in organic solar cells with ferroelectric polymers. Nat Mater 10(4):296–302CrossRef Yuan Y, Reece TJ, Sharma P et al (2011) Efficiency enhancement in organic solar cells with ferroelectric polymers. Nat Mater 10(4):296–302CrossRef
36.
Zurück zum Zitat Garcia V, Bibes M, Bocher L et al (2010) Ferroelectric control of spin polarization. Science 327(5969):1106–1110CrossRef Garcia V, Bibes M, Bocher L et al (2010) Ferroelectric control of spin polarization. Science 327(5969):1106–1110CrossRef
37.
Zurück zum Zitat Morris MR, Pendlebury SR, Hong J, Dunn S, Durrant JR (2016) Effect of internal electric fields on charge carrier dynamics in a ferroelectric material for solar energy conversion. Adv Mater 28:7123–7128CrossRef Morris MR, Pendlebury SR, Hong J, Dunn S, Durrant JR (2016) Effect of internal electric fields on charge carrier dynamics in a ferroelectric material for solar energy conversion. Adv Mater 28:7123–7128CrossRef
38.
Zurück zum Zitat Parmar K, Negi N (2017) Tailoring structural and electrical properties of A-site non-stoichiometric Na0. 5Bi0. 5TiO3 ceramic at different sintering temperature. Adv Appl Ceram 116(1):8–18CrossRef Parmar K, Negi N (2017) Tailoring structural and electrical properties of A-site non-stoichiometric Na0. 5Bi0. 5TiO3 ceramic at different sintering temperature. Adv Appl Ceram 116(1):8–18CrossRef
39.
Zurück zum Zitat Li M, Zhang H, Cook SN et al (2015) Dramatic influence of A-site nonstoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide Bi0. 5Na0. 5TiO3. Chem Mater 27(2):629–634CrossRef Li M, Zhang H, Cook SN et al (2015) Dramatic influence of A-site nonstoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide Bi0. 5Na0. 5TiO3. Chem Mater 27(2):629–634CrossRef
40.
Zurück zum Zitat Fancher CM, Blendell JE, Bowman KJ (2013) Poling effect on d 33 in textured Bi0. 5Na0. 5TiO3-based materials. Scr Mater 68(7):443–446CrossRef Fancher CM, Blendell JE, Bowman KJ (2013) Poling effect on d 33 in textured Bi0. 5Na0. 5TiO3-based materials. Scr Mater 68(7):443–446CrossRef
41.
Zurück zum Zitat Sung Y, Kim J, Cho J et al (2010) Effects of Na nonstoichiometry in (Bi0.5Na0.5+ x) TiO3 ceramics. Appl Phys Lett 96(2):022901–022903CrossRef Sung Y, Kim J, Cho J et al (2010) Effects of Na nonstoichiometry in (Bi0.5Na0.5+ x) TiO3 ceramics. Appl Phys Lett 96(2):022901–022903CrossRef
42.
Zurück zum Zitat Suchanicz J, Roleder K, Kania A, Hańaderek J (1988) Electrostrictive strain and pyroeffect in the region of phase coexistence in Na0. 5Bi0. 5TiO3. Ferroelectrics 77(1):107–110CrossRef Suchanicz J, Roleder K, Kania A, Hańaderek J (1988) Electrostrictive strain and pyroeffect in the region of phase coexistence in Na0. 5Bi0. 5TiO3. Ferroelectrics 77(1):107–110CrossRef
43.
Zurück zum Zitat Kushwaha HS, Vaish R (2015) Enhanced visible light photocatalytic activity of curcumin-sensitized perovskite Bi0. 5Na0. 5TiO3 for rhodamine 6G Degradation. Int J Appl Ceram Tech 13:333–339CrossRef Kushwaha HS, Vaish R (2015) Enhanced visible light photocatalytic activity of curcumin-sensitized perovskite Bi0. 5Na0. 5TiO3 for rhodamine 6G Degradation. Int J Appl Ceram Tech 13:333–339CrossRef
44.
Zurück zum Zitat Singh L et al (2016) Comparative dielectric and ferroelectric characteristics of Bi0. 5Na0. 5TiO3, CaCu3Ti4O12, and 0.5 Bi0. 5Na0. 5TiO3–0.5 CaCu3Ti4O12 Electroceramics. J Electron Mater 45(6):2662–2672CrossRef Singh L et al (2016) Comparative dielectric and ferroelectric characteristics of Bi0. 5Na0. 5TiO3, CaCu3Ti4O12, and 0.5 Bi0. 5Na0. 5TiO3–0.5 CaCu3Ti4O12 Electroceramics. J Electron Mater 45(6):2662–2672CrossRef
45.
Zurück zum Zitat Dawson JA, Chen H, Tanaka I (2015) Crystal structure, defect chemistry and oxygen ion transport of the ferroelectric perovskite, Na0.5 Bi0.5 TiO3: insights from first-principles calculations. J Mater Chem A 3(32):16574–16582CrossRef Dawson JA, Chen H, Tanaka I (2015) Crystal structure, defect chemistry and oxygen ion transport of the ferroelectric perovskite, Na0.5 Bi0.5 TiO3: insights from first-principles calculations. J Mater Chem A 3(32):16574–16582CrossRef
46.
Zurück zum Zitat Jeong I-K, Sung YS, Song TK, Kim MH, Llobet A (2015) Structural evolution of bismuth sodium titanate induced by A-site non-stoichiometry: neutron powder diffraction studies. J Korean Phys Soc 67(9):1583–1587CrossRef Jeong I-K, Sung YS, Song TK, Kim MH, Llobet A (2015) Structural evolution of bismuth sodium titanate induced by A-site non-stoichiometry: neutron powder diffraction studies. J Korean Phys Soc 67(9):1583–1587CrossRef
47.
Zurück zum Zitat Inoue Y, Sato K, Sato K (1989) Photovoltaic and photocatalytic behaviour of a ferroelectric semiconductor, lead strontium zirconate titanate, with a polarization axis perpendicular to the surface. J Chem Soc Faraday Trans 1 85(7):1765–1774CrossRef Inoue Y, Sato K, Sato K (1989) Photovoltaic and photocatalytic behaviour of a ferroelectric semiconductor, lead strontium zirconate titanate, with a polarization axis perpendicular to the surface. J Chem Soc Faraday Trans 1 85(7):1765–1774CrossRef
48.
Zurück zum Zitat Ping Y, Goddard WA III, Galli GA (2015) Energetics and solvation effects at the photoanode/catalyst interface: ohmic contact versus Schottky barrier. J Am Chem Soc 137(16):5264–5267CrossRef Ping Y, Goddard WA III, Galli GA (2015) Energetics and solvation effects at the photoanode/catalyst interface: ohmic contact versus Schottky barrier. J Am Chem Soc 137(16):5264–5267CrossRef
49.
Zurück zum Zitat Choi T, Lee S, Choi Y, Kiryukhin V, Cheong S-W (2009) Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324(5923):63–66CrossRef Choi T, Lee S, Choi Y, Kiryukhin V, Cheong S-W (2009) Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324(5923):63–66CrossRef
50.
Zurück zum Zitat Burbure NV, Salvador PA, Rohrer GS (2010) Photochemical reactivity of titania films on BaTiO3 substrates: origin of spatial selectivity. Chem Mater 22(21):5823–5830CrossRef Burbure NV, Salvador PA, Rohrer GS (2010) Photochemical reactivity of titania films on BaTiO3 substrates: origin of spatial selectivity. Chem Mater 22(21):5823–5830CrossRef
Metadaten
Titel
Ferroelectric electrocatalysts: a new class of materials for oxygen evolution reaction with synergistic effect of ferroelectric polarization
verfasst von
H. S. Kushwaha
Aditi Halder
Rahul Vaish
Publikationsdatum
03.10.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 2/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1611-7

Weitere Artikel der Ausgabe 2/2018

Journal of Materials Science 2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.