Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

1. Ferrofluids: Composition and Physical Processes

verfasst von : Aleksandra A. Bozhko, Sergey A. Suslov

Erschienen in: Convection in Ferro-Nanofluids: Experiments and Theory

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A brief history and an overview of the current state of knowledge of ferrofluids (also known as ferrocolloids or ferro-nanofluids) are given. Applications of ferrofluids as advanced heat carrier media in heat management systems are emphasised. It is discussed that in the absence of a magnetic field, ferrofluids can be considered as a type of synthesised nanofluids or ordinary colloids. However, when they are placed in an external magnetic field, they behave as magneto-polarisable media, the magnetic susceptibility of which is several orders of magnitude larger than that of natural fluids and gases. Various physical mechanisms of heat and mass transfer in ferrofluids are identified. It is shown that the macroscopic behaviour of ferrofluids is strongly affected by their microstructure that depends on the way they are synthesised, stored and used.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Not to be confused with magnetorheological fluids containing much larger, of the order of a micron, particles.
 
2
Particles with Neel [166] relaxation where magnetic moments align with the field within a particle not causing its overall rotation do not lead to magnetoviscous effect.
 
Literatur
5.
Zurück zum Zitat Altan, C.L., Elkatmis, A., Yuksel, M., Aslan, N., Bucak, S.: Enhancement of thermal conductivity upon application of magnetic field to Fe3O4 nanofluids. J. Appl. Phys. 110, 093917 (2011)CrossRef Altan, C.L., Elkatmis, A., Yuksel, M., Aslan, N., Bucak, S.: Enhancement of thermal conductivity upon application of magnetic field to Fe3O4 nanofluids. J. Appl. Phys. 110, 093917 (2011)CrossRef
8.
Zurück zum Zitat Avdeev, M.V., Aksenov, V.L.: Small-angle neutron scattering in structure studies of magnetic fluids (in Russian). Phys. Usp. 180(10), 1009–1034 (2010)CrossRef Avdeev, M.V., Aksenov, V.L.: Small-angle neutron scattering in structure studies of magnetic fluids (in Russian). Phys. Usp. 180(10), 1009–1034 (2010)CrossRef
11.
Zurück zum Zitat Bashirnezhad, K., Bazri, S., Safaei, M.R., Goodarzi, M., Dahari, M., Mahian, O., Dalklca, A.S., Wongwises, S.: Viscosity of nanofluids: a review of recent experimental studies. Int. Commun. Heat Mass Trans. 73, 114–123 (2016)CrossRef Bashirnezhad, K., Bazri, S., Safaei, M.R., Goodarzi, M., Dahari, M., Mahian, O., Dalklca, A.S., Wongwises, S.: Viscosity of nanofluids: a review of recent experimental studies. Int. Commun. Heat Mass Trans. 73, 114–123 (2016)CrossRef
12.
Zurück zum Zitat Bashtovoy, V.G., Berkovsky, B.M., Vislovich, A.N.: Introduction to thermomechanics of magnetic fluids (in Russian). Institute of High Temperatures of the Russian Academy of Sciences, Moscow (1985) Bashtovoy, V.G., Berkovsky, B.M., Vislovich, A.N.: Introduction to thermomechanics of magnetic fluids (in Russian). Institute of High Temperatures of the Russian Academy of Sciences, Moscow (1985)
13.
Zurück zum Zitat Bashtovoy, V.G., Berkovsky, B.M., Vislovich, A.N.: Introduction to Thermomechanics of Magnetic Fluids. Hemisphere, Washington (1988) Bashtovoy, V.G., Berkovsky, B.M., Vislovich, A.N.: Introduction to Thermomechanics of Magnetic Fluids. Hemisphere, Washington (1988)
22.
Zurück zum Zitat Bibik, E.E., Lavrov, I.S.: Preparing ferrofluids (in Russian). USSR Patent 467666 (1975) Bibik, E.E., Lavrov, I.S.: Preparing ferrofluids (in Russian). USSR Patent 467666 (1975)
23.
Zurück zum Zitat Blums, E., Cebers, A.O., Maiorov, M.M.: Magnetic Fluids. Walter de Gruyter, Berlin (1997) Blums, E., Cebers, A.O., Maiorov, M.M.: Magnetic Fluids. Walter de Gruyter, Berlin (1997)
24.
Zurück zum Zitat Blums, E., Mezulis, A., Maiorov, M., Kronkalns, G.: Thermal diffusion of magnetic nanoparticles in ferrocolloids: experiments on particle separation in vertical columns. J. Magn. Magn. Mater. 169, 220–228 (1997)CrossRef Blums, E., Mezulis, A., Maiorov, M., Kronkalns, G.: Thermal diffusion of magnetic nanoparticles in ferrocolloids: experiments on particle separation in vertical columns. J. Magn. Magn. Mater. 169, 220–228 (1997)CrossRef
25.
Zurück zum Zitat Blums, E., Odenbach, S., Mezulis, A., Maiorov, M.: Soret coefficient of nanoparticles in ferrofluids in the presence of magnetic field. Phys. Fluids 10(9), 2155–2163 (1998)CrossRef Blums, E., Odenbach, S., Mezulis, A., Maiorov, M.: Soret coefficient of nanoparticles in ferrofluids in the presence of magnetic field. Phys. Fluids 10(9), 2155–2163 (1998)CrossRef
26.
Zurück zum Zitat Blums, E.Y., Maiorov, M.M., Tsebers, A.O.: Magnetic Fluids (in Russian). Zinatne, Riga, Latvia (1989) Blums, E.Y., Maiorov, M.M., Tsebers, A.O.: Magnetic Fluids (in Russian). Zinatne, Riga, Latvia (1989)
31.
Zurück zum Zitat Bozhko, A., Bulychev, P.V., Putin, G.F., Tynjälä, T.: Spatio-temporal chaos in colloid convection. Fluid Dyn. 42(1), 24–32 (2007)CrossRef Bozhko, A., Bulychev, P.V., Putin, G.F., Tynjälä, T.: Spatio-temporal chaos in colloid convection. Fluid Dyn. 42(1), 24–32 (2007)CrossRef
37.
Zurück zum Zitat Bozhko, A.A., Putin, G.F.: Experimental investigation of thermo-magnetic convection in uniform external field. Bull. Acad. Sci. USSR Phys. Ser. 55, 1149–1156 (1991) Bozhko, A.A., Putin, G.F.: Experimental investigation of thermo-magnetic convection in uniform external field. Bull. Acad. Sci. USSR Phys. Ser. 55, 1149–1156 (1991)
38.
Zurück zum Zitat Bozhko, A.A., Putin, G.F.: Heat transfer and flow patterns in ferrofluid convection. Magnetohydrodynamics 39(2), 147–169 (2003) Bozhko, A.A., Putin, G.F.: Heat transfer and flow patterns in ferrofluid convection. Magnetohydrodynamics 39(2), 147–169 (2003)
41.
Zurück zum Zitat Bozhko, A.A., Putin, G.F., Sidorov, A.S., Suslov, S.A.: Convection in a vertical layer of stratified magnetic fluid. Magnetohydrodynamics 49(1–2), 143–152 (2013) Bozhko, A.A., Putin, G.F., Sidorov, A.S., Suslov, S.A.: Convection in a vertical layer of stratified magnetic fluid. Magnetohydrodynamics 49(1–2), 143–152 (2013)
47.
48.
Zurück zum Zitat Brown, W.F.: Thermal fluctuations of a single-domain particle. Phys. Rev. 130(5), 1677–1686 (1963)CrossRef Brown, W.F.: Thermal fluctuations of a single-domain particle. Phys. Rev. 130(5), 1677–1686 (1963)CrossRef
49.
Zurück zum Zitat Büscher, K., Helm, C.A., Gross, C., Glöckl, G., Romanus, E., Weitschies, W.: Nanoparticle composition of a ferrofluid and its effects on the magnetic properties. Langmuir 20(6), 2435–2444 (2004)CrossRef Büscher, K., Helm, C.A., Gross, C., Glöckl, G., Romanus, E., Weitschies, W.: Nanoparticle composition of a ferrofluid and its effects on the magnetic properties. Langmuir 20(6), 2435–2444 (2004)CrossRef
53.
Zurück zum Zitat Buzmakov, V.M., Pshenichnikov, A.F.: On the structure of microaggregates in magnetite colloids. J. Colloid Interface Sci. 182, 63–70 (1996)CrossRef Buzmakov, V.M., Pshenichnikov, A.F.: On the structure of microaggregates in magnetite colloids. J. Colloid Interface Sci. 182, 63–70 (1996)CrossRef
61.
Zurück zum Zitat Chekanov, V.V.: Formation of aggregates as a result of phase transition in magnetic colloids. In: Physical Properties of Magnetic Fluids (in Russian), pp. 42–49. Ural Branch of the Academy of Sciences of the USSR, Sverdlovsk (1983) Chekanov, V.V.: Formation of aggregates as a result of phase transition in magnetic colloids. In: Physical Properties of Magnetic Fluids (in Russian), pp. 42–49. Ural Branch of the Academy of Sciences of the USSR, Sverdlovsk (1983)
63.
Zurück zum Zitat Chikazumi, S., Taketomi, S., Ukita, M., Mizukami, M., Miyajima, H., Setogava, M., Kurihara, Y.: Physics of magnetic fluid. J. Magn. Magn. Mater. 65, 245–251 (1987)CrossRef Chikazumi, S., Taketomi, S., Ukita, M., Mizukami, M., Miyajima, H., Setogava, M., Kurihara, Y.: Physics of magnetic fluid. J. Magn. Magn. Mater. 65, 245–251 (1987)CrossRef
64.
Zurück zum Zitat Choi, S.U.S.: Nanofluids: from vision to reality through research. J. Heat Transfer 131, 033106 (2009)CrossRef Choi, S.U.S.: Nanofluids: from vision to reality through research. J. Heat Transfer 131, 033106 (2009)CrossRef
75.
Zurück zum Zitat Demouchy, G., Mezulis, A., Bee, A., Talbot, D., Bacri, J.C., Bourdon, A.: Diffusion and thermodiffusion studies in ferrofluids with a new two-dimensional forced Rayleigh-scattering technique. J. Phys. D: Appl. Phys. 37, 1417–1428 (2004)CrossRef Demouchy, G., Mezulis, A., Bee, A., Talbot, D., Bacri, J.C., Bourdon, A.: Diffusion and thermodiffusion studies in ferrofluids with a new two-dimensional forced Rayleigh-scattering technique. J. Phys. D: Appl. Phys. 37, 1417–1428 (2004)CrossRef
77.
Zurück zum Zitat Devendiran, D.K., Amirtham, V.A.: A review on preparation, characterization, properties and applications of nanofluids. Renew. Sust. Energ. Rev. 60, 21–40 (2016)CrossRef Devendiran, D.K., Amirtham, V.A.: A review on preparation, characterization, properties and applications of nanofluids. Renew. Sust. Energ. Rev. 60, 21–40 (2016)CrossRef
83.
Zurück zum Zitat Einstein, A.: Eine neue Bestimmung der moleküldimensionen. Ann. Phys. 19, 298–306 (1906)MATH Einstein, A.: Eine neue Bestimmung der moleküldimensionen. Ann. Phys. 19, 298–306 (1906)MATH
84.
Zurück zum Zitat Elfimova, E.A., Ivanov, A.O., Lakhtina, E.V., Pshenichnikov, A.F., Camp, P.J.: Sedimentation equilibria in polydisperse ferrofluids: critical comparisons between experiment, theory, and computer simulationlaminar free convection in a slot. Soft Matter 12, 4103–4112 (2016)CrossRef Elfimova, E.A., Ivanov, A.O., Lakhtina, E.V., Pshenichnikov, A.F., Camp, P.J.: Sedimentation equilibria in polydisperse ferrofluids: critical comparisons between experiment, theory, and computer simulationlaminar free convection in a slot. Soft Matter 12, 4103–4112 (2016)CrossRef
85.
Zurück zum Zitat Elmore, W.C.: The magnetisation of ferromagnetic colloids. Phys. Rev. 54, 1092–1095 (1938)CrossRef Elmore, W.C.: The magnetisation of ferromagnetic colloids. Phys. Rev. 54, 1092–1095 (1938)CrossRef
88.
Zurück zum Zitat Fertman, V.E.: Magnetic fluids—Natural convection and heat transfer. Izdatel’stvo Nauka i Tekhnika, Minsk (1978) Fertman, V.E.: Magnetic fluids—Natural convection and heat transfer. Izdatel’stvo Nauka i Tekhnika, Minsk (1978)
94.
Zurück zum Zitat Gavili, A., Zabihi, F., Isfahani, T.D., Sabbaghzadeh, J.: The thermal conductivity of water base ferrofluids under magnetic field. Exp. Therm. Fluid Sci. 41, 94–98 (2012)CrossRef Gavili, A., Zabihi, F., Isfahani, T.D., Sabbaghzadeh, J.: The thermal conductivity of water base ferrofluids under magnetic field. Exp. Therm. Fluid Sci. 41, 94–98 (2012)CrossRef
100.
Zurück zum Zitat Glukhov, A.F.: Experimental investigation of thermal convection in mixtures in conditions of gravitational separation. Ph.D. Thesis, Perm State University, Perm (1995) Glukhov, A.F.: Experimental investigation of thermal convection in mixtures in conditions of gravitational separation. Ph.D. Thesis, Perm State University, Perm (1995)
103.
Zurück zum Zitat Godson, L., Raja, B., Lal, D.M., Wongwises, S.: Enhancement of heat transfer using nanofluids—an overview. Renew. Sust. Energ. Rev. 14, 629–641 (2010)CrossRef Godson, L., Raja, B., Lal, D.M., Wongwises, S.: Enhancement of heat transfer using nanofluids—an overview. Renew. Sust. Energ. Rev. 14, 629–641 (2010)CrossRef
104.
Zurück zum Zitat Goldina, O.A., Lebedev, A.V., Ivanov, A.O., Elfmova, E.A.: Themperature dependence of initial magnetic susceptibility of polydisperse ferrofluids: a critical comparison between experiment and theory. Magnetohydrodynamics 52, 35–42 (2016) Goldina, O.A., Lebedev, A.V., Ivanov, A.O., Elfmova, E.A.: Themperature dependence of initial magnetic susceptibility of polydisperse ferrofluids: a critical comparison between experiment and theory. Magnetohydrodynamics 52, 35–42 (2016)
107.
Zurück zum Zitat Gubin, S.P., Koksharov, Y.A., Khomutov, G.B., Yurkov, G.Y.: Magnetic nanoparticles: preparation, structure and properties. Russ. Chem. Rev. 74(6), 489–520 (2005)CrossRef Gubin, S.P., Koksharov, Y.A., Khomutov, G.B., Yurkov, G.Y.: Magnetic nanoparticles: preparation, structure and properties. Russ. Chem. Rev. 74(6), 489–520 (2005)CrossRef
108.
Zurück zum Zitat Hall, W.F., Busenberg, S.N.: Viscosity of magnetic suspensions. J. Chem. Phys. 51, 137–144 (1969)CrossRef Hall, W.F., Busenberg, S.N.: Viscosity of magnetic suspensions. J. Chem. Phys. 51, 137–144 (1969)CrossRef
112.
Zurück zum Zitat Hirschberg, A.: Role of asphaltenes in compositional grading of a reservoirs fluid column. J. Petrol. Technol. 40(1), 89–94 (1988)MathSciNetCrossRef Hirschberg, A.: Role of asphaltenes in compositional grading of a reservoirs fluid column. J. Petrol. Technol. 40(1), 89–94 (1988)MathSciNetCrossRef
118.
Zurück zum Zitat Ivanov, A.S.: Magnetophoresis and diffusion colloid particles in a thin layer of magnetic fluid. Ph.D. Thesis, Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences, Perm (2011) Ivanov, A.S.: Magnetophoresis and diffusion colloid particles in a thin layer of magnetic fluid. Ph.D. Thesis, Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences, Perm (2011)
119.
Zurück zum Zitat Ivanov, A.S., Pshenichnikov, A.F.: On natural solutal convection in magnetic fluids. Phys. Fluids 27, 092001 (2015)CrossRef Ivanov, A.S., Pshenichnikov, A.F.: On natural solutal convection in magnetic fluids. Phys. Fluids 27, 092001 (2015)CrossRef
120.
Zurück zum Zitat Jakobs, I.S., Bean, C.P.: Fine particles, thin films and exchange anisotropy. In: Rado, G.T., Suhl, H. (eds.) Magnetism, vol. 3, pp. 271–350. Academic Press, New York (1963) Jakobs, I.S., Bean, C.P.: Fine particles, thin films and exchange anisotropy. In: Rado, G.T., Suhl, H. (eds.) Magnetism, vol. 3, pp. 271–350. Academic Press, New York (1963)
122.
Zurück zum Zitat Kandelousi, S.M., Ganji, D.D.: External Magnetic Field Effects on Hydrothermal Treatment of Nanofluid. William Andrew, Amsterdam (2016)MATH Kandelousi, S.M., Ganji, D.D.: External Magnetic Field Effects on Hydrothermal Treatment of Nanofluid. William Andrew, Amsterdam (2016)MATH
134.
Zurück zum Zitat Krauzina, M.T., Bozhko, A.A., Krauzin, P.V., Suslov, S.A.: Oscillatory instability of convection in ferromagnetic nanofluid and in transformer oil. Fluid Dyn. Res. 48, 061407 (2016)MathSciNetCrossRef Krauzina, M.T., Bozhko, A.A., Krauzin, P.V., Suslov, S.A.: Oscillatory instability of convection in ferromagnetic nanofluid and in transformer oil. Fluid Dyn. Res. 48, 061407 (2016)MathSciNetCrossRef
137.
Zurück zum Zitat Kronkalns, G.E.: Measurements of coefficients of thermal and electric conductivity of a ferrofluid in magnetic field (in Russian). Magnetohydrodynamics 31, 138–140 (1977) Kronkalns, G.E.: Measurements of coefficients of thermal and electric conductivity of a ferrofluid in magnetic field (in Russian). Magnetohydrodynamics 31, 138–140 (1977)
139.
Zurück zum Zitat Kumar, A., Subudhi, S.: Preparation, characteristics, convection and applications of magnetic nanofluids: a review. Heat Mass Transfer 54, 241–265 (2018)CrossRef Kumar, A., Subudhi, S.: Preparation, characteristics, convection and applications of magnetic nanofluids: a review. Heat Mass Transfer 54, 241–265 (2018)CrossRef
141.
Zurück zum Zitat Lakhtina, E.V.: Centrifugation of dilute ferrofluids. Phys. Procedia 9, 221–223 (2010)CrossRef Lakhtina, E.V.: Centrifugation of dilute ferrofluids. Phys. Procedia 9, 221–223 (2010)CrossRef
142.
Zurück zum Zitat Lakhtina, E.V., Pshenichnikov, A.F.: Dispersion of magnetic susceptibility and the microstructure of magnetic fluid. Colloid J. 68(3), 327–337 (2006)CrossRef Lakhtina, E.V., Pshenichnikov, A.F.: Dispersion of magnetic susceptibility and the microstructure of magnetic fluid. Colloid J. 68(3), 327–337 (2006)CrossRef
149.
Zurück zum Zitat Li, Q., Xuan, Y., Wang, J.: Experimental investigations on transport properties of magnetic fluids. Exp. Therm. Fluid Sci. 30, 109–116 (2005) Li, Q., Xuan, Y., Wang, J.: Experimental investigations on transport properties of magnetic fluids. Exp. Therm. Fluid Sci. 30, 109–116 (2005)
154.
Zurück zum Zitat Mamiya, H., Nakatani, I., Furubayshy, T.: Phase transitions of iron-nitride magnetic fluids. Phys. Rev. Lett. 84, 6106–6109 (2000)CrossRef Mamiya, H., Nakatani, I., Furubayshy, T.: Phase transitions of iron-nitride magnetic fluids. Phys. Rev. Lett. 84, 6106–6109 (2000)CrossRef
155.
Zurück zum Zitat Martsenyuk, M.A.: Thermal conductivity of a suspension of ellipsoidal particles in a magnetic field. In: Proceedings of the 8th Riga MHD Conference, Riga, Latvia, vol. 1, pp. 108–109 (1975) Martsenyuk, M.A.: Thermal conductivity of a suspension of ellipsoidal particles in a magnetic field. In: Proceedings of the 8th Riga MHD Conference, Riga, Latvia, vol. 1, pp. 108–109 (1975)
157.
Zurück zum Zitat Maxwell, J.C.: A Treatise on Electricity and Magnetism. Clarendon Press, Oxford (1881)MATH Maxwell, J.C.: A Treatise on Electricity and Magnetism. Clarendon Press, Oxford (1881)MATH
158.
Zurück zum Zitat McTaque, J.P.: Magnetoviscosity of magnetic colloids. J. Chem. Phys. 51(1), 133–136 (1969)CrossRef McTaque, J.P.: Magnetoviscosity of magnetic colloids. J. Chem. Phys. 51(1), 133–136 (1969)CrossRef
159.
Zurück zum Zitat Mezquia, D.A., Larranaga, M., Bou-Ali, M.M., Madariaga, J.A., Santamaria, C., Platten, J.K.: Contribution to thermodiffusion coefficient measurements in dcmix project. Int. J. Therm. Sci. 92, 14–16 (2015)CrossRef Mezquia, D.A., Larranaga, M., Bou-Ali, M.M., Madariaga, J.A., Santamaria, C., Platten, J.K.: Contribution to thermodiffusion coefficient measurements in dcmix project. Int. J. Therm. Sci. 92, 14–16 (2015)CrossRef
161.
Zurück zum Zitat Montel, F.: Importance de la thermodiffusion en exploration et production petrolieres. Entropie 184–185, 86–93 (1994) Montel, F.: Importance de la thermodiffusion en exploration et production petrolieres. Entropie 184–185, 86–93 (1994)
162.
Zurück zum Zitat Morozov, K.I.: On the theory of the Soret effect in colloids. In: Köhler, W., Wiegand, S. (eds.) Thermal Nonequilibrium Phenomena in Fluid Mixtures, pp. 38–60. Springer, Berlin (2002)CrossRef Morozov, K.I.: On the theory of the Soret effect in colloids. In: Köhler, W., Wiegand, S. (eds.) Thermal Nonequilibrium Phenomena in Fluid Mixtures, pp. 38–60. Springer, Berlin (2002)CrossRef
166.
Zurück zum Zitat Neel, L.: Influence of thermal fluctuations on the magnetization of ferromagnetic small particles. C. R. Acad. Sci. Paris 228(6), 664–666 (1949) Neel, L.: Influence of thermal fluctuations on the magnetization of ferromagnetic small particles. C. R. Acad. Sci. Paris 228(6), 664–666 (1949)
167.
Zurück zum Zitat Nkurikiyimfura, I., Wang, Y., Pan, Z.: Heat transfer enhancement by magnetic nanofluids—a review. Renew. Sust. Energ. Rev. 21, 548–561 (2013)CrossRef Nkurikiyimfura, I., Wang, Y., Pan, Z.: Heat transfer enhancement by magnetic nanofluids—a review. Renew. Sust. Energ. Rev. 21, 548–561 (2013)CrossRef
170.
Zurück zum Zitat Odenbach, S.: Ferrofluids: Magnetically Controllable Fluids and Their Applications. Springer, New York (2002)CrossRef Odenbach, S.: Ferrofluids: Magnetically Controllable Fluids and Their Applications. Springer, New York (2002)CrossRef
173.
Zurück zum Zitat Odenbach, S.: Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids. Springer Lecture Notes in Physics, vol. 763. Springer, New York (2009) Odenbach, S.: Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids. Springer Lecture Notes in Physics, vol. 763. Springer, New York (2009)
178.
Zurück zum Zitat Orlov, D.V., Kurbatov, V.G., Silaev, V.A., Sizov, A.P., Trofimenko, M.I.: Ferromagnetic fluid for magnetofluidic seals. USSR Patent 516861 (1976) Orlov, D.V., Kurbatov, V.G., Silaev, V.A., Sizov, A.P., Trofimenko, M.I.: Ferromagnetic fluid for magnetofluidic seals. USSR Patent 516861 (1976)
181.
Zurück zum Zitat Padovani, S., Sada, C., Mazzoldi, P., Brunetti, B., Borgia, I., Sgamellotti, A., Giulivi, A., D’Acapito, F., Battaglin, G.: Copper in glazes of renaissance luster pottery: nanoparticles, ions, and local environment. J. Appl. Phys. 93(12), 10058–10063 (2003)CrossRef Padovani, S., Sada, C., Mazzoldi, P., Brunetti, B., Borgia, I., Sgamellotti, A., Giulivi, A., D’Acapito, F., Battaglin, G.: Copper in glazes of renaissance luster pottery: nanoparticles, ions, and local environment. J. Appl. Phys. 93(12), 10058–10063 (2003)CrossRef
184.
Zurück zum Zitat Papell, S.S.: Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles. US Patent 3215572 (1965) Papell, S.S.: Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles. US Patent 3215572 (1965)
186.
Zurück zum Zitat Parekh, K., Lee, H.S.: Magnetic field induced enhancement in thermal conductivity of magnetite nanofluid. J. Appl. Phys. 107(9), 09A310 (2010) Parekh, K., Lee, H.S.: Magnetic field induced enhancement in thermal conductivity of magnetite nanofluid. J. Appl. Phys. 107(9), 09A310 (2010)
187.
Zurück zum Zitat Peterson, E.A., Kruger, D.A.: Field induced agglomeration in magnetic colloids. J. Colloid Interface Sci. 62(1), 24–34 (1977)CrossRef Peterson, E.A., Kruger, D.A.: Field induced agglomeration in magnetic colloids. J. Colloid Interface Sci. 62(1), 24–34 (1977)CrossRef
188.
Zurück zum Zitat Philip, J., Shima, P.D., Raj, B.: Evidence for enhanced thermal conduction through percolating structures in nanofluids. Nanotechnology 19, 305706 (2008)CrossRef Philip, J., Shima, P.D., Raj, B.: Evidence for enhanced thermal conduction through percolating structures in nanofluids. Nanotechnology 19, 305706 (2008)CrossRef
190.
Zurück zum Zitat Platten, J.K.: The Soret effect: a review of recent experimental results. J. Appl. Mech. 73, 5–15 (2006)CrossRef Platten, J.K.: The Soret effect: a review of recent experimental results. J. Appl. Mech. 73, 5–15 (2006)CrossRef
192.
Zurück zum Zitat Polunin, V.M.: Acoustic Properties of Nanodisperse Magnetic Fluids (in Russian). Fizmatlit, Moscow (2012) Polunin, V.M.: Acoustic Properties of Nanodisperse Magnetic Fluids (in Russian). Fizmatlit, Moscow (2012)
193.
Zurück zum Zitat Pop, L.M., Odenbach, S.: Investigation of microscopic reason for the magnetoviscous effect in ferrofluid studied by small angle neutron scattering. J. Phys. Condens. Mater. 18, S2785–S2802 (2006)CrossRef Pop, L.M., Odenbach, S.: Investigation of microscopic reason for the magnetoviscous effect in ferrofluid studied by small angle neutron scattering. J. Phys. Condens. Mater. 18, S2785–S2802 (2006)CrossRef
194.
Zurück zum Zitat Pshenichnikov, A., Lebedev, A., Lakhtina, E., Kuznetsov, A.: Effect of centrifugation on dynamic susceptibility of magnetic fluids. J. Magn. Magn. Matter. 432, 30–36 (2017)CrossRef Pshenichnikov, A., Lebedev, A., Lakhtina, E., Kuznetsov, A.: Effect of centrifugation on dynamic susceptibility of magnetic fluids. J. Magn. Magn. Matter. 432, 30–36 (2017)CrossRef
195.
Zurück zum Zitat Pshenichnikov, A.F.: Equilibrium magnetization of concentrated ferrocolloids. J. Magn. Magn. Matter. 145(3), 319–326 (1995)CrossRef Pshenichnikov, A.F.: Equilibrium magnetization of concentrated ferrocolloids. J. Magn. Magn. Matter. 145(3), 319–326 (1995)CrossRef
197.
Zurück zum Zitat Pshenichnikov, A.F., Elfimova, E.A., Ivanov, A.O.: Magnetophoresis, sedimentation, and diffusion of particles in concentrated magnetic fluids. J. Chem. Phys. 134, 184508 (2011)CrossRef Pshenichnikov, A.F., Elfimova, E.A., Ivanov, A.O.: Magnetophoresis, sedimentation, and diffusion of particles in concentrated magnetic fluids. J. Chem. Phys. 134, 184508 (2011)CrossRef
200.
Zurück zum Zitat Putin, G.F.: Experimental investigation of the effect of a barometric distribution on ferromagnetic colloid flow. In: Proceedings of the 11th Riga Workshop on Magnetohydrodynamics (in Russian), vol. 3, pp. 15–18. Physics Institute of the Latvian Academy of Sciences, Riga (1984) Putin, G.F.: Experimental investigation of the effect of a barometric distribution on ferromagnetic colloid flow. In: Proceedings of the 11th Riga Workshop on Magnetohydrodynamics (in Russian), vol. 3, pp. 15–18. Physics Institute of the Latvian Academy of Sciences, Riga (1984)
204.
Zurück zum Zitat Raja, M., Vijayan, R., Dineshkumar, P., Venkatesan, M.: Review on nanofluids characterization, heat transfer characteristics and applications. Renew. Sus. Energy Rev. 64, 163–173 (2016)CrossRef Raja, M., Vijayan, R., Dineshkumar, P., Venkatesan, M.: Review on nanofluids characterization, heat transfer characteristics and applications. Renew. Sus. Energy Rev. 64, 163–173 (2016)CrossRef
209.
Zurück zum Zitat Rosensweig, R.E.: Ferrohydrodynamics. Cambridge University Press, Cambridge (1985) Rosensweig, R.E.: Ferrohydrodynamics. Cambridge University Press, Cambridge (1985)
213.
Zurück zum Zitat Sage, B.H., Member, A.I.M.E., Lacey, W.N.: Gravitational concentration gradietns in static columns of hydrocarbon fluids. Tans. AIME 132(3), 120–131 (1939)CrossRef Sage, B.H., Member, A.I.M.E., Lacey, W.N.: Gravitational concentration gradietns in static columns of hydrocarbon fluids. Tans. AIME 132(3), 120–131 (1939)CrossRef
215.
Zurück zum Zitat Schere, C., Figueiredo Neto, A.M.: Ferrofluids: properties and applications. Braz. J. Phys. 35(3A), 718–727 (2005)CrossRef Schere, C., Figueiredo Neto, A.M.: Ferrofluids: properties and applications. Braz. J. Phys. 35(3A), 718–727 (2005)CrossRef
222.
Zurück zum Zitat Shliomis, M.I.: Magnetic fluids. Sov. Phys. Uspekhi 17, 153–169 (1974)CrossRef Shliomis, M.I.: Magnetic fluids. Sov. Phys. Uspekhi 17, 153–169 (1974)CrossRef
224.
Zurück zum Zitat Si, S., Li, C., Wang, X., Yu, D., Peng, Q., Li, Y.: Magnetic monodisperse Fe3O4 nanoparticles. Cryst. Growth Des. 5(2), 391–393 (2005)CrossRef Si, S., Li, C., Wang, X., Yu, D., Peng, Q., Li, Y.: Magnetic monodisperse Fe3O4 nanoparticles. Cryst. Growth Des. 5(2), 391–393 (2005)CrossRef
226.
Zurück zum Zitat Sidorov, N.I.: On the history of M. V. Lomonosov’s mosaic recipes (in Russian). Proc. Acad. Sci. USSR, Ser. VII Phys. Math. 7, 679–706 (1930) Sidorov, N.I.: On the history of M. V. Lomonosov’s mosaic recipes (in Russian). Proc. Acad. Sci. USSR, Ser. VII Phys. Math. 7, 679–706 (1930)
228.
Zurück zum Zitat Skibin, Y.N.: Magneto-optical method of determining magnetic moment of magnetic fluid particles. In: Devices and Methods of Measurement of Physical Parameters of Ferrocolloids (in Russian), pp. 85–89. Ural Branch of the Academy of Sciences of the USSR, Sverdlovsk (1991) Skibin, Y.N.: Magneto-optical method of determining magnetic moment of magnetic fluid particles. In: Devices and Methods of Measurement of Physical Parameters of Ferrocolloids (in Russian), pp. 85–89. Ural Branch of the Academy of Sciences of the USSR, Sverdlovsk (1991)
230.
Zurück zum Zitat Soret, C.: Influence de la température sur la distribution des sels dans leurs solutions. C. R. Acad. Sci. Paris 91, 289–291 (1880) Soret, C.: Influence de la température sur la distribution des sels dans leurs solutions. C. R. Acad. Sci. Paris 91, 289–291 (1880)
231.
Zurück zum Zitat Sprenger, L., Lange, A., Odenbach, S.: Thermodiffusion in concentrated ferrofluids: experimental and numerical results on magnetic thermodiffusion. Phys. Fluids 26, 022001 (2014)CrossRef Sprenger, L., Lange, A., Odenbach, S.: Thermodiffusion in concentrated ferrofluids: experimental and numerical results on magnetic thermodiffusion. Phys. Fluids 26, 022001 (2014)CrossRef
232.
Zurück zum Zitat Sprenger, L., Lange, A., Zubarev, A.Y., Odenbach, S.: Experimental, numerical and theoretical investigation on concentration-dependent Soret effect in magnetic fluids. Phys. Fluids 27, 022001 (2015)CrossRef Sprenger, L., Lange, A., Zubarev, A.Y., Odenbach, S.: Experimental, numerical and theoretical investigation on concentration-dependent Soret effect in magnetic fluids. Phys. Fluids 27, 022001 (2015)CrossRef
244.
Zurück zum Zitat Taketomi, S., Tikadzumi, S.: Magnetic Fluids (in Russian: Trans. from Japanese). Mir, Moscow (1993) Taketomi, S., Tikadzumi, S.: Magnetic Fluids (in Russian: Trans. from Japanese). Mir, Moscow (1993)
245.
Zurück zum Zitat Tareev, V.M.: Thermal conductivity of colloidal systems (in Russian). Colloid J. 6, 545–550 (1940) Tareev, V.M.: Thermal conductivity of colloidal systems (in Russian). Colloid J. 6, 545–550 (1940)
246.
Zurück zum Zitat Terekhov, V.I., Kalinin, S.V., Lehmanov, V.V.: The mechanism of heat transfer in nanofluids: state of the art (review). Part 2. Convective heat exchange (in Russian). Thermophys. Aeromech. 2, 173–188 (2010) Terekhov, V.I., Kalinin, S.V., Lehmanov, V.V.: The mechanism of heat transfer in nanofluids: state of the art (review). Part 2. Convective heat exchange (in Russian). Thermophys. Aeromech. 2, 173–188 (2010)
252.
Zurück zum Zitat Völker, T., Blums, E., Odenbach, S.: Determination of the Soret coefficient of agnetic particles in a ferrofluid from the steady and unsteady part of the separation curve. Int. J. Heat Mass Trans. 47, 4315–4325 (2004)CrossRef Völker, T., Blums, E., Odenbach, S.: Determination of the Soret coefficient of agnetic particles in a ferrofluid from the steady and unsteady part of the separation curve. Int. J. Heat Mass Trans. 47, 4315–4325 (2004)CrossRef
253.
Zurück zum Zitat Völker, T., Odenbach, S.: The influence of a uniform magnetic field on the Soret coefficient of magnetic nanoparticles. Phys. Fluids 15, 2198–2207 (2003)CrossRef Völker, T., Odenbach, S.: The influence of a uniform magnetic field on the Soret coefficient of magnetic nanoparticles. Phys. Fluids 15, 2198–2207 (2003)CrossRef
257.
Zurück zum Zitat Wang, X.Q., Mujumdar, A.S.: Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46, 1–19 (2007)CrossRef Wang, X.Q., Mujumdar, A.S.: Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46, 1–19 (2007)CrossRef
266.
Zurück zum Zitat Zhong, L., He, R., Gu, H.C.: Oleic acid coating on the monodisperse magnetic nanoparticles. Appl. Surf. Sci. 253, 2611–2617 (2006)CrossRef Zhong, L., He, R., Gu, H.C.: Oleic acid coating on the monodisperse magnetic nanoparticles. Appl. Surf. Sci. 253, 2611–2617 (2006)CrossRef
268.
Zurück zum Zitat Zsigmondy, R.A., Thiessen, P.A.: Das kolloide Gold. Lpz. (1925) Zsigmondy, R.A., Thiessen, P.A.: Das kolloide Gold. Lpz. (1925)
Metadaten
Titel
Ferrofluids: Composition and Physical Processes
verfasst von
Aleksandra A. Bozhko
Sergey A. Suslov
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-94427-2_1