Skip to main content

2015 | OriginalPaper | Buchkapitel

Fiber Laser Welding in a Controlled Inert Gas Atmosphere: An Experimental and Numerical Investigation

verfasst von : Yadaiah Nirsanametla, Swarup Bag, C. P. Paul, L. M. Kukreja

Erschienen in: Lasers Based Manufacturing

Verlag: Springer India

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In fusion welding, thermo-chemical reactions may take place among surrounding atmosphere particles and molten weld pool at high temperature gradients. The atmosphere particles such as oxygen, hydrogen and nitrogen may become part of final weld joint that severely affects the weld joint quality and weld metal properties. Therefore, the welding atmosphere and protection of weld pool plays a noticeable role on the quality of the final weld joint. Henceforth, in this chapter, fiber laser welding of austenitic stainless steel plates have been examined in two different ambient atmospheres. Firstly, the experiments are conducted in open atmosphere and in argon ambient atmosphere to study the characteristic difference between them. The experimental investigation specifies that the weld bead dimensions and aspect ratio are higher in case of argon atmosphere as compared to open atmosphere. The microstructures of heat affected zone (HAZ) and fusion zone (FZ) at both atmospheric conditions are analyzed. It is obvious from the experimental results that the top surface profile is smoother and very clear in case of welds at argon atmosphere. Moreover, in this work, the authors also reported an efficient conduction mode finite element based heat transfer model of linear fiber laser welding process using a volumetric heat source. The calculated weld bead dimensions using finite element model are compared with the experimentally measured results at similar process variables. Relatively fair agreement of the experimental results with model results entitles the robustness of the modeling approach followed here and reported in this work.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bag, S., Trivedi, A., & De, A. (2009). Development of a finite element based heat transfer model for conduction mode laser spot welding process using an adaptive volumetric heat source. Internal Journal of Thermal Science, 48, 1923–1931.CrossRef Bag, S., Trivedi, A., & De, A. (2009). Development of a finite element based heat transfer model for conduction mode laser spot welding process using an adaptive volumetric heat source. Internal Journal of Thermal Science, 48, 1923–1931.CrossRef
Zurück zum Zitat Bag, S., & De, A. (2010). Probing reliability of transport phenomena based heat transfer and fluid flow analysis in autogenous fusion welding process. Metallurgical and Materials Transactions A, 41(9), 2337–2347.CrossRef Bag, S., & De, A. (2010). Probing reliability of transport phenomena based heat transfer and fluid flow analysis in autogenous fusion welding process. Metallurgical and Materials Transactions A, 41(9), 2337–2347.CrossRef
Zurück zum Zitat Bayram, K., Ramazan, K. K., Suleyman, G., & Fatih, H. (2008). An effect of heat input, weld atmosphere and weld cooling conditions on the resistance spot weldability of 316L austenitic stainless steel. Journal of Materials Processing Technology, 195, 327–335.CrossRef Bayram, K., Ramazan, K. K., Suleyman, G., & Fatih, H. (2008). An effect of heat input, weld atmosphere and weld cooling conditions on the resistance spot weldability of 316L austenitic stainless steel. Journal of Materials Processing Technology, 195, 327–335.CrossRef
Zurück zum Zitat Christensen, N., Davies, V.L., & Gjermundsen, K. (1965). Distribution of temperatures in arc welding. British Welding Journal, 12(2), 54–75. Christensen, N., Davies, V.L., & Gjermundsen, K. (1965). Distribution of temperatures in arc welding. British Welding Journal, 12(2), 54–75.
Zurück zum Zitat De, A., Maiti, S. K., Walsh, C., & Bhadeshia, H. D. K. H. (2003). Finite element modelling of laser spot welding. Science and Technology of Welding and Joining, 8(5), 377–384.CrossRef De, A., Maiti, S. K., Walsh, C., & Bhadeshia, H. D. K. H. (2003). Finite element modelling of laser spot welding. Science and Technology of Welding and Joining, 8(5), 377–384.CrossRef
Zurück zum Zitat De, A., & DebRoy, T. (2006). Improving reliability of heat and fluid flow calculations during conduction model laser spot welding by multi-variable optimization. Science and Technology of Welding and Joining, 11(2), 143–153.CrossRef De, A., & DebRoy, T. (2006). Improving reliability of heat and fluid flow calculations during conduction model laser spot welding by multi-variable optimization. Science and Technology of Welding and Joining, 11(2), 143–153.CrossRef
Zurück zum Zitat De, A., & DebRoy, T. (2005). Reliable calculations of heat and fluid flow during conduction mode laser welding through optimization of uncertain parameters. Welding Journal, 84(7), 101–112. De, A., & DebRoy, T. (2005). Reliable calculations of heat and fluid flow during conduction mode laser welding through optimization of uncertain parameters. Welding Journal, 84(7), 101–112.
Zurück zum Zitat Dong, W., Kokawa, H., Tsukamoto, S., & Yutaka, S. S. (2005). Nitrogen desorption by high-nitrogen steel weld metal during CO2 laser welding. Metallurgical and Materials Transactions B, 36, 677–681.CrossRef Dong, W., Kokawa, H., Tsukamoto, S., & Yutaka, S. S. (2005). Nitrogen desorption by high-nitrogen steel weld metal during CO2 laser welding. Metallurgical and Materials Transactions B, 36, 677–681.CrossRef
Zurück zum Zitat Dong, W., Kokawa, H., Yutaka, S. S., & Tsukamoto, S. (2003). Nitrogen absorption by iron and stainless steels during CO2 laser welding. Metallurgical and Materials Transactions B, 34, 75–82.CrossRef Dong, W., Kokawa, H., Yutaka, S. S., & Tsukamoto, S. (2003). Nitrogen absorption by iron and stainless steels during CO2 laser welding. Metallurgical and Materials Transactions B, 34, 75–82.CrossRef
Zurück zum Zitat Dursun, O. (2008). An effect of weld current and weld atmosphere on the resistance spot weldability of 304L austenitic stainless steel. Materials and Design, 29, 597–603.CrossRef Dursun, O. (2008). An effect of weld current and weld atmosphere on the resistance spot weldability of 304L austenitic stainless steel. Materials and Design, 29, 597–603.CrossRef
Zurück zum Zitat Frewin, M. R., & Scott, D. A. (1999). Finite element model of pulsed laser welding. Welding Research Supplement, 78(1), 15–22. Frewin, M. R., & Scott, D. A. (1999). Finite element model of pulsed laser welding. Welding Research Supplement, 78(1), 15–22.
Zurück zum Zitat Goldak, J., Chakravarti, A., & Bibby, M. (1984). A new finite element model for welding heat sources. Metallurgical Transactions B, 15, 299–305.CrossRef Goldak, J., Chakravarti, A., & Bibby, M. (1984). A new finite element model for welding heat sources. Metallurgical Transactions B, 15, 299–305.CrossRef
Zurück zum Zitat Kang, B. Y., Yarlagadda, K. D. V., Kang, M. J., Kim, H. J., & Kim, I. S. (2009). The effect of alternate supply of shielding gases in austenite stainless steel GTA welding. Journal of Materials Processing Technology, 209, 4722–4727.CrossRef Kang, B. Y., Yarlagadda, K. D. V., Kang, M. J., Kim, H. J., & Kim, I. S. (2009). The effect of alternate supply of shielding gases in austenite stainless steel GTA welding. Journal of Materials Processing Technology, 209, 4722–4727.CrossRef
Zurück zum Zitat Kim, H. J., Frost, H. R., & Olson, D. L. (1998). Electrochemical oxygen transfer during direct current arc welding. Welding Journal, 77(12), 488–493. Kim, H. J., Frost, H. R., & Olson, D. L. (1998). Electrochemical oxygen transfer during direct current arc welding. Welding Journal, 77(12), 488–493.
Zurück zum Zitat Kou, S. (2002). Welding Metallurgy (3rd ed.). New York: Willey Inter Science.CrossRef Kou, S. (2002). Welding Metallurgy (3rd ed.). New York: Willey Inter Science.CrossRef
Zurück zum Zitat Kumar, A., Paul, C. P., Pathak, A. K., Bhargava, P., & Kukreja, L. M. (2012). A finer modeling approach for numerically predicting single track geometry in two dimensions during laser rapid manufacturing. Optics and Laser Technology, 44(3), 555–565.CrossRef Kumar, A., Paul, C. P., Pathak, A. K., Bhargava, P., & Kukreja, L. M. (2012). A finer modeling approach for numerically predicting single track geometry in two dimensions during laser rapid manufacturing. Optics and Laser Technology, 44(3), 555–565.CrossRef
Zurück zum Zitat Kumar, S., Roy, S., Paul, C. P., & Nath, A. K. (2008). Three-dimensional conduction heat transfer model for laser cladding process. Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology, 53, 271–287.CrossRef Kumar, S., Roy, S., Paul, C. P., & Nath, A. K. (2008). Three-dimensional conduction heat transfer model for laser cladding process. Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology, 53, 271–287.CrossRef
Zurück zum Zitat Lindgren, L. E., Runnemalm, H., & Nasstrom, M. O. (1999). Simulation of multipass welding of a thick plate. International Journal for Numerical Methods in Engineering, 44, 1301–1316.CrossRefMATH Lindgren, L. E., Runnemalm, H., & Nasstrom, M. O. (1999). Simulation of multipass welding of a thick plate. International Journal for Numerical Methods in Engineering, 44, 1301–1316.CrossRefMATH
Zurück zum Zitat Ostsemin, A. A. (2009). Estimating the temperature of an electrode-metal drop when welding in a carbon-dioxide atmosphere. Russian Engineering Research, 29(7), 668–670.CrossRef Ostsemin, A. A. (2009). Estimating the temperature of an electrode-metal drop when welding in a carbon-dioxide atmosphere. Russian Engineering Research, 29(7), 668–670.CrossRef
Zurück zum Zitat Pavelic, V., Tanbakuchi, R., Uyehara, O. A., & Myers, P. S. (1969). Experimental and computed temperature histories in gas tungsten-arc welding of thin plates. Welding Journal, 48(7), 295–305. Pavelic, V., Tanbakuchi, R., Uyehara, O. A., & Myers, P. S. (1969). Experimental and computed temperature histories in gas tungsten-arc welding of thin plates. Welding Journal, 48(7), 295–305.
Zurück zum Zitat Ramazan, K., & Koray, K. (2005). Effect of controlled atmosphere on the mig-mag arc weldment properties. Materials and Design, 26, 508–516.CrossRef Ramazan, K., & Koray, K. (2005). Effect of controlled atmosphere on the mig-mag arc weldment properties. Materials and Design, 26, 508–516.CrossRef
Zurück zum Zitat Ramirez, J. E., Han, B., & Liu, S. (1994). Effect of welding variables and solidification substructure on weld metal porosity. Metallurgical and Materials Transactions A, 25, 2285–2294.CrossRef Ramirez, J. E., Han, B., & Liu, S. (1994). Effect of welding variables and solidification substructure on weld metal porosity. Metallurgical and Materials Transactions A, 25, 2285–2294.CrossRef
Zurück zum Zitat Rosenthal, D. (1946). The theory of moving sources of heat and its application to metal treatments. Transactions of ASME, 43(11), 849–865. Rosenthal, D. (1946). The theory of moving sources of heat and its application to metal treatments. Transactions of ASME, 43(11), 849–865.
Zurück zum Zitat Rosenthal, D. (1947). Mathematical theory of heat distribution during welding and cutting. Welding Journal, 20(5), 220–234. Rosenthal, D. (1947). Mathematical theory of heat distribution during welding and cutting. Welding Journal, 20(5), 220–234.
Zurück zum Zitat Rykalin, R. R. (1974). Energy sources for welding. Welding in the World, 12, 227–248. Rykalin, R. R. (1974). Energy sources for welding. Welding in the World, 12, 227–248.
Zurück zum Zitat Sahoo, P., Collur, M. M., & DebRoy, T. (1988). Effects of oxygen and sulfur on alloying element vaporization rates during laser welding. Metallurgical Transactions B, 19, 967–972.CrossRef Sahoo, P., Collur, M. M., & DebRoy, T. (1988). Effects of oxygen and sulfur on alloying element vaporization rates during laser welding. Metallurgical Transactions B, 19, 967–972.CrossRef
Zurück zum Zitat Wang, L., & Felicelli, S. (2007). Process modeling in laser deposition of multilayer SS410 steel. Transactions of the ASME, 129(1), 261–270. Wang, L., & Felicelli, S. (2007). Process modeling in laser deposition of multilayer SS410 steel. Transactions of the ASME, 129(1), 261–270.
Zurück zum Zitat Wu, C. S., Wang, H. G., & Zhang, Y. M. (2006). A new heat source model for keyhole plasma arc welding in FEM analysis of the temperature profile. Welding Journal, 85, 284–291. Wu, C. S., Wang, H. G., & Zhang, Y. M. (2006). A new heat source model for keyhole plasma arc welding in FEM analysis of the temperature profile. Welding Journal, 85, 284–291.
Zurück zum Zitat Yadaiah, Y., & Bag, S. (2014). Development of egg-configuration heat source model in numerical simulation of autogenous fusion welding process. International Journal of Thermal Sciences, 86, 125–138.CrossRef Yadaiah, Y., & Bag, S. (2014). Development of egg-configuration heat source model in numerical simulation of autogenous fusion welding process. International Journal of Thermal Sciences, 86, 125–138.CrossRef
Zurück zum Zitat Yadaiah, N., & Bag, S. (2012). Effect of heat source parameters in thermal and mechanical analysis of linear GTA welding process. ISIJ International, 52(11), 2069–2075.CrossRef Yadaiah, N., & Bag, S. (2012). Effect of heat source parameters in thermal and mechanical analysis of linear GTA welding process. ISIJ International, 52(11), 2069–2075.CrossRef
Zurück zum Zitat Yadaiah, N., & Bag, S. (2013). Role of oxygen as surface-active element in linear GTA welding process. Journal of Materials Engineering and Performance, 22(11), 3199–3209.CrossRef Yadaiah, N., & Bag, S. (2013). Role of oxygen as surface-active element in linear GTA welding process. Journal of Materials Engineering and Performance, 22(11), 3199–3209.CrossRef
Zurück zum Zitat Yadaiah, N., Bag, S., Paul, C. P., & Kukreja, L. M. (2014). Efficient finite element modeling of fiber laser welding process under conduction regime on 316 stainless steel plate. In International Conference on Advances in Mechanical Sciences (pp. 24–31), Hyderabad, India. Yadaiah, N., Bag, S., Paul, C. P., & Kukreja, L. M. (2014). Efficient finite element modeling of fiber laser welding process under conduction regime on 316 stainless steel plate. In International Conference on Advances in Mechanical Sciences (pp. 24–31), Hyderabad, India.
Zurück zum Zitat Zambon, A., Ferro, P., & Bonollo, F. (2006). Microstructural, compositional and residual stress evaluation of CO2 laser welded superaustenitic AISI 904L stainless steel. Materials Science and Engineering A, 424, 117–127.CrossRef Zambon, A., Ferro, P., & Bonollo, F. (2006). Microstructural, compositional and residual stress evaluation of CO2 laser welded superaustenitic AISI 904L stainless steel. Materials Science and Engineering A, 424, 117–127.CrossRef
Zurück zum Zitat Zhu, X. K., & Chao, Y. J. (2002). Effect of temperature-dependent material properties on welding simulation. Computers and Structures, 80, 967–976.CrossRef Zhu, X. K., & Chao, Y. J. (2002). Effect of temperature-dependent material properties on welding simulation. Computers and Structures, 80, 967–976.CrossRef
Metadaten
Titel
Fiber Laser Welding in a Controlled Inert Gas Atmosphere: An Experimental and Numerical Investigation
verfasst von
Yadaiah Nirsanametla
Swarup Bag
C. P. Paul
L. M. Kukreja
Copyright-Jahr
2015
Verlag
Springer India
DOI
https://doi.org/10.1007/978-81-322-2352-8_20

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.