Skip to main content

2020 | OriginalPaper | Buchkapitel

9. Fiber Nonlinearity and Optical System Performance

verfasst von : Alberto Bononi, Ronen Dar, Marco Secondini, Paolo Serena, Pierluigi Poggiolini

Erschienen in: Springer Handbook of Optical Networks

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

This chapter aims to provide a comprehensive picture of the impact of fiber nonlinear effects on modern coherent wavelength division multiplexing () systems' performance. First, the main nonlinearity models currently available are introduced and discussed in depth. Then, various specific aspects are addressed, such as the interplay of polarization mode dispersion ()/polarization dependent loss () and nonlinearity, or the dependence of nonlinear effects on modulation format. The important topic of nonlinear effects mitigation is then dealt with. Finally, system performance metrics and capacity are discussed extensively, as to how they are fundamentally influenced and limited by fiber nonlinearity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat G.P. Agrawal: Non-Linear Fiber Optics, 5th edn. (Academic Press, New York 2012) G.P. Agrawal: Non-Linear Fiber Optics, 5th edn. (Academic Press, New York 2012)
Zurück zum Zitat C.R. Menyuk, B.S. Marks: Interaction of polarization mode dispersion and nonlinearity in optical fiber transmission systems, J. Lightwave Technol. 24(7), 2806–2826 (2006)CrossRef C.R. Menyuk, B.S. Marks: Interaction of polarization mode dispersion and nonlinearity in optical fiber transmission systems, J. Lightwave Technol. 24(7), 2806–2826 (2006)CrossRef
Zurück zum Zitat G. Bosco, A. Carena, R. Cigliutti, V. Curri, P. Poggiolini, F. Forghieri: Performance prediction for WDM PM-QPSK transmission over uncompensated links. In: Proc. OFC 2011, Los Angeles (2011), paper OThO7 G. Bosco, A. Carena, R. Cigliutti, V. Curri, P. Poggiolini, F. Forghieri: Performance prediction for WDM PM-QPSK transmission over uncompensated links. In: Proc. OFC 2011, Los Angeles (2011), paper OThO7
Zurück zum Zitat E. Grellier, A. Bononi: Quality parameter for coherent transmissions with Gaussian-distributed nonlinear noise, Opt. Express 19(13), 12781–12788 (2011)CrossRef E. Grellier, A. Bononi: Quality parameter for coherent transmissions with Gaussian-distributed nonlinear noise, Opt. Express 19(13), 12781–12788 (2011)CrossRef
Zurück zum Zitat C.R. Menyuk: Nonlinear pulse propagation in birefringent optical fibers, IEEE J. Quantum Electron. 23, 174–176 (1987)CrossRef C.R. Menyuk: Nonlinear pulse propagation in birefringent optical fibers, IEEE J. Quantum Electron. 23, 174–176 (1987)CrossRef
Zurück zum Zitat C.R. Menyuk: Pulse propagation in an elliptically birefringent Kerr medium, IEEE J. Quantum Electron. 25(12), 2674–2682 (1989)CrossRef C.R. Menyuk: Pulse propagation in an elliptically birefringent Kerr medium, IEEE J. Quantum Electron. 25(12), 2674–2682 (1989)CrossRef
Zurück zum Zitat J.N. Damask: Polarization Optics in Telecommunications (Springer, Berlin, Heidelberg, New York 2005) J.N. Damask: Polarization Optics in Telecommunications (Springer, Berlin, Heidelberg, New York 2005)
Zurück zum Zitat S.G. Evangelides Jr., L.F. Mollenauer, J.P. Gordon, N.S. Bergano: Polarization multiplexing with solitons, J. Lightwave Technol. 10(1), 28–35 (1992)CrossRef S.G. Evangelides Jr., L.F. Mollenauer, J.P. Gordon, N.S. Bergano: Polarization multiplexing with solitons, J. Lightwave Technol. 10(1), 28–35 (1992)CrossRef
Zurück zum Zitat P.K.A. Wai, C.R. Menyuk: Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence, J. Lightwave Technol. 14(2), 148–157 (1996)CrossRef P.K.A. Wai, C.R. Menyuk: Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence, J. Lightwave Technol. 14(2), 148–157 (1996)CrossRef
Zurück zum Zitat T.R. Taha, M.J. Ablowitz: Analytical and numerical aspects of certain nonlinear evolution equation, ii, numerical, nonlinear schroedinger equation, J. Comput. Phys. 5, 203–230 (1984)MATHCrossRef T.R. Taha, M.J. Ablowitz: Analytical and numerical aspects of certain nonlinear evolution equation, ii, numerical, nonlinear schroedinger equation, J. Comput. Phys. 5, 203–230 (1984)MATHCrossRef
Zurück zum Zitat R. Hardin, F.D. Tappert: Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations, SIAM Rev. Chron. 15, 423 (1973) R. Hardin, F.D. Tappert: Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations, SIAM Rev. Chron. 15, 423 (1973)
Zurück zum Zitat A. Hasegawa, F. Tappert: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion, Appl. Phys. Lett. 23, 142–144 (1973)CrossRef A. Hasegawa, F. Tappert: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion, Appl. Phys. Lett. 23, 142–144 (1973)CrossRef
Zurück zum Zitat J. Shao, X. Liang, S. Kumar: Comparison of split-step Fourier schemes for simulating fiber optic communication systems, IEEE Photonics J. 6(4), 1–16 (2014)CrossRef J. Shao, X. Liang, S. Kumar: Comparison of split-step Fourier schemes for simulating fiber optic communication systems, IEEE Photonics J. 6(4), 1–16 (2014)CrossRef
Zurück zum Zitat A.V. Oppenheim, R.W. Schafer: Discrete-Time Signal Processing (Prentice Hall, Upper Saddle River 1999)MATH A.V. Oppenheim, R.W. Schafer: Discrete-Time Signal Processing (Prentice Hall, Upper Saddle River 1999)MATH
Zurück zum Zitat O.V. Sinkin, R. Holzlöhner, J. Zweck, C.R. Menyuk: Optimization of the split-step Fourier method in modeling optical-fiber communications systems, J. Lightwave Technol. 21(1), 61–68 (2003)CrossRef O.V. Sinkin, R. Holzlöhner, J. Zweck, C.R. Menyuk: Optimization of the split-step Fourier method in modeling optical-fiber communications systems, J. Lightwave Technol. 21(1), 61–68 (2003)CrossRef
Zurück zum Zitat Q. Zhang, M.I. Hayee: Symmetrized split-step Fourier scheme to control global simulation accuracy in fiber-optic communication systems, J. Lightwave Technol. 26(2), 302–316 (2008)CrossRef Q. Zhang, M.I. Hayee: Symmetrized split-step Fourier scheme to control global simulation accuracy in fiber-optic communication systems, J. Lightwave Technol. 26(2), 302–316 (2008)CrossRef
Zurück zum Zitat S. Savory: Digital filters for coherent optical receivers, Opt. Express 16(2), 804–817 (2008)CrossRef S. Savory: Digital filters for coherent optical receivers, Opt. Express 16(2), 804–817 (2008)CrossRef
Zurück zum Zitat D. Zwillinger: Handbook of Differential Equations, 3rd edn. (Academic, New York 1997)MATH D. Zwillinger: Handbook of Differential Equations, 3rd edn. (Academic, New York 1997)MATH
Zurück zum Zitat M. Schetzen: The Volterra and Wiener Theories of Nonlinear Systems (Wiley, Hoboken 1980)MATH M. Schetzen: The Volterra and Wiener Theories of Nonlinear Systems (Wiley, Hoboken 1980)MATH
Zurück zum Zitat K.V. Peddanarappagari, M. Brandt-Pearce: Volterra series transfer function of single-mode fibers, J. Lightwave Technol. 15(12), 2232–2241 (1997)CrossRef K.V. Peddanarappagari, M. Brandt-Pearce: Volterra series transfer function of single-mode fibers, J. Lightwave Technol. 15(12), 2232–2241 (1997)CrossRef
Zurück zum Zitat M.J. Ablowitz, G. Biondini: Multiscale pulse dynamics in communication systems with strong dispersion management, Opt. Lett. 23(21), 1668–1670 (1998)CrossRef M.J. Ablowitz, G. Biondini: Multiscale pulse dynamics in communication systems with strong dispersion management, Opt. Lett. 23(21), 1668–1670 (1998)CrossRef
Zurück zum Zitat A. Mecozzi, C. Balslev Clausen, M. Shtaif: Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission, IEEE Photonics Technol. Lett. 12(4), 392–394 (2000)CrossRef A. Mecozzi, C. Balslev Clausen, M. Shtaif: Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission, IEEE Photonics Technol. Lett. 12(4), 392–394 (2000)CrossRef
Zurück zum Zitat A. Vannucci, P. Serena, A. Bononi: The RP method: a new tool for the iterative solution of the nonlinear Schrodinger equation, J. Lightwave Technol. 20(7), 1102–1112 (2002)CrossRef A. Vannucci, P. Serena, A. Bononi: The RP method: a new tool for the iterative solution of the nonlinear Schrodinger equation, J. Lightwave Technol. 20(7), 1102–1112 (2002)CrossRef
Zurück zum Zitat J. Tang: The channel capacity of a multispan DWDM system employing dispersive nonlinear optical fibers and an ideal coherent optical receiver, J. Lightwave Technol. 20(7), 1095–1101 (2002)CrossRef J. Tang: The channel capacity of a multispan DWDM system employing dispersive nonlinear optical fibers and an ideal coherent optical receiver, J. Lightwave Technol. 20(7), 1095–1101 (2002)CrossRef
Zurück zum Zitat P. Serena, A. Bononi: A time-domain extended Gaussian noise model, J. Lightwave Technol. 33(7), 1459–1472 (2015)CrossRef P. Serena, A. Bononi: A time-domain extended Gaussian noise model, J. Lightwave Technol. 33(7), 1459–1472 (2015)CrossRef
Zurück zum Zitat E. Ciaramella, E. Forestieri: Analytical approximation of nonlinear distortions, IEEE Photonics Technol. Lett. 17(1), 91–93 (2005)CrossRef E. Ciaramella, E. Forestieri: Analytical approximation of nonlinear distortions, IEEE Photonics Technol. Lett. 17(1), 91–93 (2005)CrossRef
Zurück zum Zitat P. Serena, A. Bononi: An alternative approach to the Gaussian noise model and its system implications, J. Lightwave Technol. 31(22), 3489–3499 (2013)CrossRef P. Serena, A. Bononi: An alternative approach to the Gaussian noise model and its system implications, J. Lightwave Technol. 31(22), 3489–3499 (2013)CrossRef
Zurück zum Zitat A. Splett, C. Kurzke, K. Petermann: Ultimate transmission capacity of amplified optical fiber communication systems taking into account fiber nonlinearities. In: Proc. Europ. Conf. Opt. Commun. (ECOC), Montreux, Vol. 2 (1993) pp. 41–44 A. Splett, C. Kurzke, K. Petermann: Ultimate transmission capacity of amplified optical fiber communication systems taking into account fiber nonlinearities. In: Proc. Europ. Conf. Opt. Commun. (ECOC), Montreux, Vol. 2 (1993) pp. 41–44
Zurück zum Zitat H. Louchet, A. Hodzic, K. Petermann: Analytical model for the performance evaluation of DWDM transmission systems, IEEE Photonics Technol. Lett. 15(9), 1219–1221 (2003)CrossRef H. Louchet, A. Hodzic, K. Petermann: Analytical model for the performance evaluation of DWDM transmission systems, IEEE Photonics Technol. Lett. 15(9), 1219–1221 (2003)CrossRef
Zurück zum Zitat E.E. Narimanov, P.P. Mitra: The channel capacity of a fiber optics communication system: perturbation theory, J. Lightwave Technol. 20(3), 530–537 (2002)CrossRef E.E. Narimanov, P.P. Mitra: The channel capacity of a fiber optics communication system: perturbation theory, J. Lightwave Technol. 20(3), 530–537 (2002)CrossRef
Zurück zum Zitat M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, R. Noe, P. Cho, I. Shpantzer, V. Karagodsky: Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links, Opt. Express 16, 15778–15810 (2008)CrossRef M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, R. Noe, P. Cho, I. Shpantzer, V. Karagodsky: Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links, Opt. Express 16, 15778–15810 (2008)CrossRef
Zurück zum Zitat X. Chen, W. Shieh: Closed-form expressions for nonlinear transmission performance of densely spaced coherent optical OFDM systems, Opt. Express 18, 19039–19054 (2010)CrossRef X. Chen, W. Shieh: Closed-form expressions for nonlinear transmission performance of densely spaced coherent optical OFDM systems, Opt. Express 18, 19039–19054 (2010)CrossRef
Zurück zum Zitat P. Poggiolini, A. Carena, V. Curri, G. Bosco, F. Forghieri: Analytical modeling of non-linear propagation in uncompensated optical transmission links, IEEE Photonics Technol. Lett. 23(11), 742–744 (2011)CrossRef P. Poggiolini, A. Carena, V. Curri, G. Bosco, F. Forghieri: Analytical modeling of non-linear propagation in uncompensated optical transmission links, IEEE Photonics Technol. Lett. 23(11), 742–744 (2011)CrossRef
Zurück zum Zitat A. Carena, V. Curri, G. Bosco, P. Poggiolini, F. Forghieri: Modeling of the impact of non-linear propagation effects in uncompensated optical coherent transmission links, J. Lightwave Technol. 30(10), 1524–1539 (2012)CrossRef A. Carena, V. Curri, G. Bosco, P. Poggiolini, F. Forghieri: Modeling of the impact of non-linear propagation effects in uncompensated optical coherent transmission links, J. Lightwave Technol. 30(10), 1524–1539 (2012)CrossRef
Zurück zum Zitat P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, F. Forghieri: A detailed analytical derivation of the GN model of non-linear interference in coherent optical transmission systems, arXiv: 1209.0394 (2012) P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, F. Forghieri: A detailed analytical derivation of the GN model of non-linear interference in coherent optical transmission systems, arXiv: 1209.0394 (2012)
Zurück zum Zitat P. Johannisson, M. Karlsson: Perturbation analysis of nonlinear propagation in a strongly dispersive optical communication system, J. Lightwave Technol. 31(8), 1273–1282 (2013)CrossRef P. Johannisson, M. Karlsson: Perturbation analysis of nonlinear propagation in a strongly dispersive optical communication system, J. Lightwave Technol. 31(8), 1273–1282 (2013)CrossRef
Zurück zum Zitat P. Poggiolini: The GN model of non-linear propagation in uncompensated coherent optical systems, J. Lightwave Technol. 30(24), 3857–3879 (2012)CrossRef P. Poggiolini: The GN model of non-linear propagation in uncompensated coherent optical systems, J. Lightwave Technol. 30(24), 3857–3879 (2012)CrossRef
Zurück zum Zitat S.J. Savory: Approximations for the nonlinear self-channel interference of channels with rectangular spectra, IEEE Photonics Technol. Lett. 25(10), 961–964 (2013)CrossRef S.J. Savory: Approximations for the nonlinear self-channel interference of channels with rectangular spectra, IEEE Photonics Technol. Lett. 25(10), 961–964 (2013)CrossRef
Zurück zum Zitat P. Johannisson, E. Agrell: Modeling of nonlinear signal distortion in fiber-optic networks, J. Lightwave Technol. 32(23), 3942–3950 (2014)CrossRef P. Johannisson, E. Agrell: Modeling of nonlinear signal distortion in fiber-optic networks, J. Lightwave Technol. 32(23), 3942–3950 (2014)CrossRef
Zurück zum Zitat A. Bononi, O. Beucher, P. Serena: Single- and cross-channel nonlinear interference in the gaussian noise model with rectangular spectra, Opt. Express 21(26), 32254–32268 (2013)CrossRef A. Bononi, O. Beucher, P. Serena: Single- and cross-channel nonlinear interference in the gaussian noise model with rectangular spectra, Opt. Express 21(26), 32254–32268 (2013)CrossRef
Zurück zum Zitat P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, F. Forghieri: The GN model of fiber non-linear propagation and its applications, J. Lightwave Technol. 32(4), 694–721 (2014)CrossRef P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, F. Forghieri: The GN model of fiber non-linear propagation and its applications, J. Lightwave Technol. 32(4), 694–721 (2014)CrossRef
Zurück zum Zitat P. Poggiolini, A. Carena, Y. Jiang, G. Bosco, V. Curri, F. Forghieri: Impact of low-OSNR operation on the performance of advanced coherent optical transmission systems. In: Proc. Europ. Conf. Opt. Commun. (ECOC), Cannes (2014), paper arXiv:1407.2223 P. Poggiolini, A. Carena, Y. Jiang, G. Bosco, V. Curri, F. Forghieri: Impact of low-OSNR operation on the performance of advanced coherent optical transmission systems. In: Proc. Europ. Conf. Opt. Commun. (ECOC), Cannes (2014), paper arXiv:1407.2223
Zurück zum Zitat P. Serena: Nonlinear signal–noise interaction in optical links with nonlinear equalization, J. Lightwave Technol. 34(6), 1476–1483 (2016)CrossRef P. Serena: Nonlinear signal–noise interaction in optical links with nonlinear equalization, J. Lightwave Technol. 34(6), 1476–1483 (2016)CrossRef
Zurück zum Zitat P.K.A. Wai, C.R. Menyuk, H.H. Chen: Stability of solitons in randomly varying birefringent fibers, Opt. Lett. 16(16), 1231–1233 (1991)CrossRef P.K.A. Wai, C.R. Menyuk, H.H. Chen: Stability of solitons in randomly varying birefringent fibers, Opt. Lett. 16(16), 1231–1233 (1991)CrossRef
Zurück zum Zitat D. Marcuse, C.R. Menyuk, P.K.A. Wai: Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence, J. Lightwave Technol. 15(9), 1735–1746 (1997)CrossRef D. Marcuse, C.R. Menyuk, P.K.A. Wai: Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence, J. Lightwave Technol. 15(9), 1735–1746 (1997)CrossRef
Zurück zum Zitat P. Poggiolini, G. Bosco, A. Carena, R. Cigliutti, V. Curri, F. Forghieri, R. Pastorelli, S. Piciaccia: The LOGON strategy for low-complexity control plane implementation in new-generation flexible networks. In: Proc. OFC 2013, Los Angeles (2013), paper OW1H.3 P. Poggiolini, G. Bosco, A. Carena, R. Cigliutti, V. Curri, F. Forghieri, R. Pastorelli, S. Piciaccia: The LOGON strategy for low-complexity control plane implementation in new-generation flexible networks. In: Proc. OFC 2013, Los Angeles (2013), paper OW1H.3
Zurück zum Zitat R. Pastorelli, S. Piciaccia, G. Galimberti, E. Self, M. Brunella, G. Calabretta, F. Forghieri, D. Siracusa, A. Zanardi, E. Salvadori, G. Bosco, A. Carena, V. Curri, P. Poggiolini: Optical control plane based on an analytical model of non-linear transmission effects in a self-optimized network. In: Proc. Europ. Conf. Opt. Commun. (ECOC), London (2013), paper We.3.E.4 R. Pastorelli, S. Piciaccia, G. Galimberti, E. Self, M. Brunella, G. Calabretta, F. Forghieri, D. Siracusa, A. Zanardi, E. Salvadori, G. Bosco, A. Carena, V. Curri, P. Poggiolini: Optical control plane based on an analytical model of non-linear transmission effects in a self-optimized network. In: Proc. Europ. Conf. Opt. Commun. (ECOC), London (2013), paper We.3.E.4
Zurück zum Zitat R. Pastorelli, G. Bosco, A. Nespola, S. Piciaccia, F. Forghieri: Network planning strategies for next-generation flexible optical networks. In: Proc. OFC 2014, San Francisco (2014), paper M2B.1 R. Pastorelli, G. Bosco, A. Nespola, S. Piciaccia, F. Forghieri: Network planning strategies for next-generation flexible optical networks. In: Proc. OFC 2014, San Francisco (2014), paper M2B.1
Zurück zum Zitat P. Poggiolini, Y. Jiang: Recent advances in the modeling of the impact of nonlinear fiber propagation effects on uncompensated coherent transmission systems, tutorial review, J. Lightwave Technol. 35(3), 458–480 (2017)CrossRef P. Poggiolini, Y. Jiang: Recent advances in the modeling of the impact of nonlinear fiber propagation effects on uncompensated coherent transmission systems, tutorial review, J. Lightwave Technol. 35(3), 458–480 (2017)CrossRef
Zurück zum Zitat A. Carena, G. Bosco, V. Curri, P. Poggiolini, F. Forghieri: Impact of the transmitted signal initial dispersion transient on the accuracy of the GN-model of non-linear propagation. In: Proc. Europ. Conf. Opt. Commun. (ECOC), London (2013), paper Th.1.D.4 A. Carena, G. Bosco, V. Curri, P. Poggiolini, F. Forghieri: Impact of the transmitted signal initial dispersion transient on the accuracy of the GN-model of non-linear propagation. In: Proc. Europ. Conf. Opt. Commun. (ECOC), London (2013), paper Th.1.D.4
Zurück zum Zitat P. Serena, A. Bononi: On the accuracy of the Gaussian nonlinear model for dispersion-unmanaged coherent links. In: Proc. Europ. Conf. Opt. Commun. (ECOC), London (2013), paper Th.1.D.3 P. Serena, A. Bononi: On the accuracy of the Gaussian nonlinear model for dispersion-unmanaged coherent links. In: Proc. Europ. Conf. Opt. Commun. (ECOC), London (2013), paper Th.1.D.3
Zurück zum Zitat R. Dar, M. Feder, A. Mecozzi, M. Shtaif: Properties of nonlinear noise in long, dispersion-uncompensated fiber links, Opt. Express 21(22), 25685–25699 (2013)CrossRef R. Dar, M. Feder, A. Mecozzi, M. Shtaif: Properties of nonlinear noise in long, dispersion-uncompensated fiber links, Opt. Express 21(22), 25685–25699 (2013)CrossRef
Zurück zum Zitat R. Dar, M. Feder, A. Mecozzi, M. Shtaif: Accumulation of nonlinear interference noise in fiber-optic systems, Opt. Express 22(12), 14199–14211 (2014)CrossRef R. Dar, M. Feder, A. Mecozzi, M. Shtaif: Accumulation of nonlinear interference noise in fiber-optic systems, Opt. Express 22(12), 14199–14211 (2014)CrossRef
Zurück zum Zitat R. Dar, M. Feder, A. Mecozzi, M. Shtaif: Pulse collision picture of inter-channel nonlinear interference noise in fiber-optic communications, J. Lightwave Technol. 34, 593–607 (2016)CrossRef R. Dar, M. Feder, A. Mecozzi, M. Shtaif: Pulse collision picture of inter-channel nonlinear interference noise in fiber-optic communications, J. Lightwave Technol. 34, 593–607 (2016)CrossRef
Zurück zum Zitat E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini, A. Nespola, D. Zeolla, F. Forghieri: Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links, Opt. Express 19(26), B790–B798 (2011)CrossRef E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini, A. Nespola, D. Zeolla, F. Forghieri: Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links, Opt. Express 19(26), B790–B798 (2011)CrossRef
Zurück zum Zitat J.-X. Cai, H. Zhang, H.G. Batshon, M. Mazurczyk, O.V. Sinkin, D.G. Foursa, A.N. Pilipetskii, G. Mohs, N.S. Bergano: 200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6.0 b/s/Hz spectral efficiency, J. Lightwave Technol. 32(4), 832–839 (2014)CrossRef J.-X. Cai, H. Zhang, H.G. Batshon, M. Mazurczyk, O.V. Sinkin, D.G. Foursa, A.N. Pilipetskii, G. Mohs, N.S. Bergano: 200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6.0 b/s/Hz spectral efficiency, J. Lightwave Technol. 32(4), 832–839 (2014)CrossRef
Zurück zum Zitat J.-X. Cai, O.V. Sinkin, H. Zhang, H.G. Batshon, M. Mazurczyk, D.G. Foursa, A. Pilipetskii, G. Mohs: Nonlinearity compensation benefit in high capacity ultra-long haul transmission systems. In: Proc. Europ. Conf. Opt. Commun. (ECOC), London (2013), paper We.4.D.2 J.-X. Cai, O.V. Sinkin, H. Zhang, H.G. Batshon, M. Mazurczyk, D.G. Foursa, A. Pilipetskii, G. Mohs: Nonlinearity compensation benefit in high capacity ultra-long haul transmission systems. In: Proc. Europ. Conf. Opt. Commun. (ECOC), London (2013), paper We.4.D.2
Zurück zum Zitat A.J. Stark, Y.-T. Hsueh, T.F. Detwiler, M.M. Filer, S. Tibuleac, S.E. Ralph: System performance prediction with the Gaussian noise model in 100G PDM-QPSK coherent optical networks, J. Lightwave Technol. 31(21), 3352–3360 (2013)CrossRef A.J. Stark, Y.-T. Hsueh, T.F. Detwiler, M.M. Filer, S. Tibuleac, S.E. Ralph: System performance prediction with the Gaussian noise model in 100G PDM-QPSK coherent optical networks, J. Lightwave Technol. 31(21), 3352–3360 (2013)CrossRef
Zurück zum Zitat A. Nespola, S. Straullu, A. Carena, G. Bosco, R. Cigliutti, V. Curri, P. Poggiolini, M. Hirano, Y. Yamamoto, T. Sasaki, J. Bauwelinck, K. Verheyen, F. Forghieri: GN-model validation over seven fiber types in uncompensated PM-16QAM Nyquist-WDM links, IEEE Photonics Technol. Lett. 26(2), 206–209 (2014)CrossRef A. Nespola, S. Straullu, A. Carena, G. Bosco, R. Cigliutti, V. Curri, P. Poggiolini, M. Hirano, Y. Yamamoto, T. Sasaki, J. Bauwelinck, K. Verheyen, F. Forghieri: GN-model validation over seven fiber types in uncompensated PM-16QAM Nyquist-WDM links, IEEE Photonics Technol. Lett. 26(2), 206–209 (2014)CrossRef
Zurück zum Zitat J.-X. Cai, H.G. Batshon, H. Zhang, M. Mazurczyk, O.V. Sinkin, D.G. Foursa, A.N. Pilipetskii: Transmission performance of coded modulation formats in a wide range of spectral efficiencies. In: Proc. OFC, San Francisco (2014), paper M2C.3 J.-X. Cai, H.G. Batshon, H. Zhang, M. Mazurczyk, O.V. Sinkin, D.G. Foursa, A.N. Pilipetskii: Transmission performance of coded modulation formats in a wide range of spectral efficiencies. In: Proc. OFC, San Francisco (2014), paper M2C.3
Zurück zum Zitat J. Pan, P. Isautier, M. Filer, S. Tibuleac, S.E. Ralph: Gaussian noise model aided in-band crosstalk analysis in ROADM-enabled DWDM networks. In: Proc. OFC, San Francisco (2014), paper Th1I.1 J. Pan, P. Isautier, M. Filer, S. Tibuleac, S.E. Ralph: Gaussian noise model aided in-band crosstalk analysis in ROADM-enabled DWDM networks. In: Proc. OFC, San Francisco (2014), paper Th1I.1
Zurück zum Zitat P. Poggiolini, G. Bosco, A. Carena, F. Guiomar, M. Ranjbar Zefreh, F. Forghieri, S. Piciaccia: Non-linearity modeling at ultra-high symbol rates. In: Proc. OFC 2018, paper W1G.3, San Diego (2018) P. Poggiolini, G. Bosco, A. Carena, F. Guiomar, M. Ranjbar Zefreh, F. Forghieri, S. Piciaccia: Non-linearity modeling at ultra-high symbol rates. In: Proc. OFC 2018, paper W1G.3, San Diego (2018)
Zurück zum Zitat P. Poggiolini, G. Bosco, A. Carena, D. Pilori, A. Nespola, M. Ranjbar Zefreh, M. Bertino, F. Forghieri: Non-linearity modeling for Gaussian-constellation systems at ultra-high symbol rates. In: Proc. Europ. Conf. Opt. Commun. (ECOC), paper Tu4G.3, Rome (2018) P. Poggiolini, G. Bosco, A. Carena, D. Pilori, A. Nespola, M. Ranjbar Zefreh, M. Bertino, F. Forghieri: Non-linearity modeling for Gaussian-constellation systems at ultra-high symbol rates. In: Proc. Europ. Conf. Opt. Commun. (ECOC), paper Tu4G.3, Rome (2018)
Zurück zum Zitat A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, F. Forghieri: EGN model of non-linear fiber propagation, Opt. Express 22(13), 16335–16362 (2014)CrossRef A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, F. Forghieri: EGN model of non-linear fiber propagation, Opt. Express 22(13), 16335–16362 (2014)CrossRef
Zurück zum Zitat A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, F. Forghieri: On the accuracy of the GN-model and on analytical correction terms to improve it, arXiv:1401.6946 (2014) A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, F. Forghieri: On the accuracy of the GN-model and on analytical correction terms to improve it, arXiv:1401.6946 (2014)
Zurück zum Zitat P. Poggiolini, Y. Jiang, A. Carena, F. Forghieri: Analytical modeling of the impact of fiber non-linear propagation on coherent systems and networks. In: Enabling Technologies for High Spectral-Efficiency Coherent Optical Communication Networks, ed. by X. Zhou, C. Xie (Wiley, Hoboken 2016) P. Poggiolini, Y. Jiang, A. Carena, F. Forghieri: Analytical modeling of the impact of fiber non-linear propagation on coherent systems and networks. In: Enabling Technologies for High Spectral-Efficiency Coherent Optical Communication Networks, ed. by X. Zhou, C. Xie (Wiley, Hoboken 2016)
Zurück zum Zitat P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, F. Forghieri: A simple and effective closed-form GN model correction formula accounting for signal non-Gaussian distribution, J. Lightwave Technol. 33(2), 459–473 (2015)CrossRef P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, F. Forghieri: A simple and effective closed-form GN model correction formula accounting for signal non-Gaussian distribution, J. Lightwave Technol. 33(2), 459–473 (2015)CrossRef
Zurück zum Zitat P. Poggiolini, Y. Jiang, A. Carena, F. Forghieri: A simple and accurate closed-form EGN model formula, arXiv:1503.04132 (2015) P. Poggiolini, Y. Jiang, A. Carena, F. Forghieri: A simple and accurate closed-form EGN model formula, arXiv:1503.04132 (2015)
Zurück zum Zitat D. Semrau, R.I. Killey, P. Bayvel: A closed-form approximation of the Gaussian noise model in the presence of inter-channel stimulated Raman scattering, arXiv:1808.07940 [eess.SP] (2018) D. Semrau, R.I. Killey, P. Bayvel: A closed-form approximation of the Gaussian noise model in the presence of inter-channel stimulated Raman scattering, arXiv:1808.07940 [eess.SP] (2018)
Zurück zum Zitat P. Poggiolini: A generalized GN-model closed-form formula, arXiv:1810.06545 [eess.SP] (2018) P. Poggiolini: A generalized GN-model closed-form formula, arXiv:1810.06545 [eess.SP] (2018)
Zurück zum Zitat D. Semrau, G. Saavedra, D. Lavery, R.I. Killey, P. Bayvel: A closed-form expression to evaluate nonlinear interference in Raman-amplified links, J. Lightwave Technol. 35(19), 4316–4328 (2017)CrossRef D. Semrau, G. Saavedra, D. Lavery, R.I. Killey, P. Bayvel: A closed-form expression to evaluate nonlinear interference in Raman-amplified links, J. Lightwave Technol. 35(19), 4316–4328 (2017)CrossRef
Zurück zum Zitat M. Cantono, J.-L. Auge, V. Curri: Modelling the impact of SRS on NLI generation in commercial equipment: An experimental investigation. In: Proc. OFC 2018, paper M1D.2, San Diego (2018) M. Cantono, J.-L. Auge, V. Curri: Modelling the impact of SRS on NLI generation in commercial equipment: An experimental investigation. In: Proc. OFC 2018, paper M1D.2, San Diego (2018)
Zurück zum Zitat M. Cantono, D. Pilori, A. Ferrari, C. Catanese, J. Thouras, J.L. Auge, V. Curri: On the interplay of nonlinear interference generation with stimulated Raman scattering for QoT estimation, J. Lightwave Technol. 35(15), 3131–3141 (2018)CrossRef M. Cantono, D. Pilori, A. Ferrari, C. Catanese, J. Thouras, J.L. Auge, V. Curri: On the interplay of nonlinear interference generation with stimulated Raman scattering for QoT estimation, J. Lightwave Technol. 35(15), 3131–3141 (2018)CrossRef
Zurück zum Zitat A. Mecozzi, R.-J. Essiambre: Nonlinear Shannon limit in pseudolinear coherent systems, J. Lightwave Technol. 30(12), 2011–2024 (2012)CrossRef A. Mecozzi, R.-J. Essiambre: Nonlinear Shannon limit in pseudolinear coherent systems, J. Lightwave Technol. 30(12), 2011–2024 (2012)CrossRef
Zurück zum Zitat M. Secondini, E. Forestieri: Analytical fiber-optic channel model in the presence of cross-phase modulations, IEEE Photonics Technol. Lett. 24(22), 2016–2019 (2012)CrossRef M. Secondini, E. Forestieri: Analytical fiber-optic channel model in the presence of cross-phase modulations, IEEE Photonics Technol. Lett. 24(22), 2016–2019 (2012)CrossRef
Zurück zum Zitat R. Dar, M. Feder, A. Mecozzi, M. Shtaif: Time varying ISI model for nonlinear interference noise. In: Opt. Fiber Commun. Conference (OFC), paper W2A.62 (2014) R. Dar, M. Feder, A. Mecozzi, M. Shtaif: Time varying ISI model for nonlinear interference noise. In: Opt. Fiber Commun. Conference (OFC), paper W2A.62 (2014)
Zurück zum Zitat R. Dar, P.J. Winzer: Nonlinear interference mitigation: Methods and potential gain, J. Lightwave Technol. 35, 903–930 (2017) R. Dar, P.J. Winzer: Nonlinear interference mitigation: Methods and potential gain, J. Lightwave Technol. 35, 903–930 (2017)
Zurück zum Zitat R.C. Jones: A new calculus for the treatment of optical systems. VII. Properties of the N-matrices, J. Opt. Soc. Am. 38, 671–685 (1948)CrossRef R.C. Jones: A new calculus for the treatment of optical systems. VII. Properties of the N-matrices, J. Opt. Soc. Am. 38, 671–685 (1948)CrossRef
Zurück zum Zitat J.P. Gordon, H. Kogelnik: PMD fundamentals: Polarization mode dispersion in optical fibers, Proc. Nat. Acad. Sci. Am. 97(9), 4541–4550 (2000)CrossRef J.P. Gordon, H. Kogelnik: PMD fundamentals: Polarization mode dispersion in optical fibers, Proc. Nat. Acad. Sci. Am. 97(9), 4541–4550 (2000)CrossRef
Zurück zum Zitat O. Golani, R. Dar, M. Feder, A. Mecozzi, M. Shtaif: Modeling the bit-error-rate performance of nonlinear fiber-optic systems, J. Lightwave Technol. 34, 3482–3489 (2016)CrossRef O. Golani, R. Dar, M. Feder, A. Mecozzi, M. Shtaif: Modeling the bit-error-rate performance of nonlinear fiber-optic systems, J. Lightwave Technol. 34, 3482–3489 (2016)CrossRef
Zurück zum Zitat M. Secondini, E. Forestieri: On XPM mitigation in WDM fiber-optic systems, IEEE Photonics Technol. Lett. 26(22), 2252–2255 (2014)CrossRef M. Secondini, E. Forestieri: On XPM mitigation in WDM fiber-optic systems, IEEE Photonics Technol. Lett. 26(22), 2252–2255 (2014)CrossRef
Zurück zum Zitat R. Dar, M. Feder, A. Mecozzi, M. Shtaif: Inter-channel nonlinear interference noise in WDM systems: modeling and mitigation, J. Lightwave Technol. 33, 1044–1053 (2015)CrossRef R. Dar, M. Feder, A. Mecozzi, M. Shtaif: Inter-channel nonlinear interference noise in WDM systems: modeling and mitigation, J. Lightwave Technol. 33, 1044–1053 (2015)CrossRef
Zurück zum Zitat R. Dar, O. Geller, M. Feder, A. Mecozzi, M. Shtaif: Mitigation of inter-channel nonlinear interference in WDM systems. In: Proc. Europ. Conf. Opt. Commun. (ECOC), paper P.5.6, Cannes (2014) R. Dar, O. Geller, M. Feder, A. Mecozzi, M. Shtaif: Mitigation of inter-channel nonlinear interference in WDM systems. In: Proc. Europ. Conf. Opt. Commun. (ECOC), paper P.5.6, Cannes (2014)
Zurück zum Zitat M.P. Yankov, T. Fehenberger, L. Barletta, N. Hanik: Low-complexity tracking of laser and nonlinear phase noise in WDM optical fiber systems, J. Lightwave Technol. 33, 4975–4984 (2015)CrossRef M.P. Yankov, T. Fehenberger, L. Barletta, N. Hanik: Low-complexity tracking of laser and nonlinear phase noise in WDM optical fiber systems, J. Lightwave Technol. 33, 4975–4984 (2015)CrossRef
Zurück zum Zitat C. Pan, H. Bülow, W. Idler, L. Schmalen, F.R. Kschischang: Optical nonlinear phase noise compensation for 9×32-GBaud PolDM-16 QAM transmission using a code-aided expectation-maximization algorithm, J. Lightwave Technol. 33, 3679–3686 (2015)CrossRef C. Pan, H. Bülow, W. Idler, L. Schmalen, F.R. Kschischang: Optical nonlinear phase noise compensation for 9×32-GBaud PolDM-16 QAM transmission using a code-aided expectation-maximization algorithm, J. Lightwave Technol. 33, 3679–3686 (2015)CrossRef
Zurück zum Zitat C. Schmidt-Langhorst, R. Elschner, F. Frey, R. Emmerich, C. Schubert: Experimental analysis of nonlinear interference noise in heterogeneous flex-grid WDM transmission. In: Europ. Conf. Opt. Commun. (ECOC) (2015), paper Tu.1.4.3 C. Schmidt-Langhorst, R. Elschner, F. Frey, R. Emmerich, C. Schubert: Experimental analysis of nonlinear interference noise in heterogeneous flex-grid WDM transmission. In: Europ. Conf. Opt. Commun. (ECOC) (2015), paper Tu.1.4.3
Zurück zum Zitat L. Li, Z. Tao, L. Liu, W. Yan, S. Oda, T. Hoshida, J.C. Rasmussen: Nonlinear polarization-crosstalk canceller for dual-polarization digital coherent receivers. In: Opt. Fiber Communic. Conf. (OFC) (2010), paper OWE3 L. Li, Z. Tao, L. Liu, W. Yan, S. Oda, T. Hoshida, J.C. Rasmussen: Nonlinear polarization-crosstalk canceller for dual-polarization digital coherent receivers. In: Opt. Fiber Communic. Conf. (OFC) (2010), paper OWE3
Zurück zum Zitat A. Ghazisaeidi, M. Salsi, J. Renaudier, O. Bertran-Pardo, H. Mardoyan, G. Charlet: Performance analysis of decision-aided nonlinear cross-polarization mitigation algorithm. In: Europ. Conf. Opt. Commun. (ECOC) (2012), paper We-3 A. Ghazisaeidi, M. Salsi, J. Renaudier, O. Bertran-Pardo, H. Mardoyan, G. Charlet: Performance analysis of decision-aided nonlinear cross-polarization mitigation algorithm. In: Europ. Conf. Opt. Commun. (ECOC) (2012), paper We-3
Zurück zum Zitat P.M. Lushnikov: Fully parallel algorithm for simulating dispersion-managed wavelength-division-multiplexed optical fiber systems, Opt. Lett. 27(11), 939 (2002)CrossRef P.M. Lushnikov: Fully parallel algorithm for simulating dispersion-managed wavelength-division-multiplexed optical fiber systems, Opt. Lett. 27(11), 939 (2002)CrossRef
Zurück zum Zitat E. Forestieri, M. Secondini: Solving the nonlinear Schrödinger equation. In: Optical Communication Theory and Techniques, ed. by E. Forestieri (Springer, New York 2005)CrossRef E. Forestieri, M. Secondini: Solving the nonlinear Schrödinger equation. In: Optical Communication Theory and Techniques, ed. by E. Forestieri (Springer, New York 2005)CrossRef
Zurück zum Zitat A.O. Korotkevich, P.M. Lushnikov: Proof-of-concept implementation of the massively parallel algorithm for simulation of dispersion-managed WDM optical fiber systems, Opt. Lett. 36(10), 1851–1853 (2011)CrossRef A.O. Korotkevich, P.M. Lushnikov: Proof-of-concept implementation of the massively parallel algorithm for simulation of dispersion-managed WDM optical fiber systems, Opt. Lett. 36(10), 1851–1853 (2011)CrossRef
Zurück zum Zitat E. Seve, P. Ramantanis, J.-C. Antona, E. Grellier, O. Rival, F. Vacondio, S. Bigo: Semi-analytical model for the performance estimation of 100Gb/s PDM-QPSK optical transmission systems without Inline dispersion compensation and mixed fiber types. In: Proc. Europ. Conf. Opt. Commun. (ECOC) 2013 (2013), paper Th.1.D.2 E. Seve, P. Ramantanis, J.-C. Antona, E. Grellier, O. Rival, F. Vacondio, S. Bigo: Semi-analytical model for the performance estimation of 100Gb/s PDM-QPSK optical transmission systems without Inline dispersion compensation and mixed fiber types. In: Proc. Europ. Conf. Opt. Commun. (ECOC) 2013 (2013), paper Th.1.D.2
Zurück zum Zitat A. Papoulis: Probability, Random Variables, and Stochastic Processes, 3rd edn. (McGraw-Hill, New York 1991)MATH A. Papoulis: Probability, Random Variables, and Stochastic Processes, 3rd edn. (McGraw-Hill, New York 1991)MATH
Zurück zum Zitat M. Secondini, E. Forestieri, C.R. Menyuk: A combined regular-logarithmic perturbation method for signal-noise interaction in amplified optical systems, J. Lightwave Technol. 27(16), 3358–3369 (2009)CrossRef M. Secondini, E. Forestieri, C.R. Menyuk: A combined regular-logarithmic perturbation method for signal-noise interaction in amplified optical systems, J. Lightwave Technol. 27(16), 3358–3369 (2009)CrossRef
Zurück zum Zitat M. Secondini, E. Forestieri, G. Prati: Achievable information rate in nonlinear WDM fiber-optic systems with arbitrary modulation formats and dispersion maps, J. Lightwave Technol. 31(23), 3839–3852 (2013)CrossRef M. Secondini, E. Forestieri, G. Prati: Achievable information rate in nonlinear WDM fiber-optic systems with arbitrary modulation formats and dispersion maps, J. Lightwave Technol. 31(23), 3839–3852 (2013)CrossRef
Zurück zum Zitat P. Bello: Characterization of randomly time-variant linear channels, IEEE Trans. Commun. Syst. 11, 360–393 (1963)CrossRef P. Bello: Characterization of randomly time-variant linear channels, IEEE Trans. Commun. Syst. 11, 360–393 (1963)CrossRef
Zurück zum Zitat K. Liu, T. Kadous, A.M. Sayeed: Orthogonal time-frequency signaling over doubly dispersive channels, IEEE Trans. Inform. Theory 50(11), 2583–2603 (2004)MathSciNetMATHCrossRef K. Liu, T. Kadous, A.M. Sayeed: Orthogonal time-frequency signaling over doubly dispersive channels, IEEE Trans. Inform. Theory 50(11), 2583–2603 (2004)MathSciNetMATHCrossRef
Zurück zum Zitat M. Secondini, E. Agrell, E. Forestieri, D. Marsella: Fiber nonlinearity mitigation in WDM systems: Strategies and achievable rates. In: Proc. Europ. Conf. Exhib. Opt. Commun., Sweden (2017) M. Secondini, E. Agrell, E. Forestieri, D. Marsella: Fiber nonlinearity mitigation in WDM systems: Strategies and achievable rates. In: Proc. Europ. Conf. Exhib. Opt. Commun., Sweden (2017)
Zurück zum Zitat P.P. Mitra, J.B. Stark: Nonlinear limits to the information capacity of optical fiber communications, Nature 411(6841), 1027–1030 (2001)CrossRef P.P. Mitra, J.B. Stark: Nonlinear limits to the information capacity of optical fiber communications, Nature 411(6841), 1027–1030 (2001)CrossRef
Zurück zum Zitat A.G. Green, P.B. Littlewood, P.P. Mitra, L.G.L. Wegener: Schroedinger equation with a spatially and temporally random potential: effects of cross-phase modulation in optical communication, Phys. Rev. E 66(4), 046627 (2002)CrossRef A.G. Green, P.B. Littlewood, P.P. Mitra, L.G.L. Wegener: Schroedinger equation with a spatially and temporally random potential: effects of cross-phase modulation in optical communication, Phys. Rev. E 66(4), 046627 (2002)CrossRef
Zurück zum Zitat S. Blanes, F. Casas, J. Oteo, J. Ros: The Magnus expansion and some of its applications, Phys. Rep. 470(5–6), 151–238 (2009)MathSciNetCrossRef S. Blanes, F. Casas, J. Oteo, J. Ros: The Magnus expansion and some of its applications, Phys. Rep. 470(5–6), 151–238 (2009)MathSciNetCrossRef
Zurück zum Zitat M. Reimer, D. Yevick, D. Dumas: The accuracy of the Magnus expansion for polarization-mode dispersion and polarization-dependent loss, J. Lightwave Technol. 26(19), 3337–3344 (2008)CrossRef M. Reimer, D. Yevick, D. Dumas: The accuracy of the Magnus expansion for polarization-mode dispersion and polarization-dependent loss, J. Lightwave Technol. 26(19), 3337–3344 (2008)CrossRef
Zurück zum Zitat G.P. Agrawal: Fiber-Optic Communications Systems, 3rd edn. (Wiley, Hoboken 2002)CrossRef G.P. Agrawal: Fiber-Optic Communications Systems, 3rd edn. (Wiley, Hoboken 2002)CrossRef
Zurück zum Zitat J. Hansryd, P.A. Andrekson, M. Westlund, J. Li, P.O. Hedekvist: Fiber-based optical parametric amplifiers and their applications, IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002)CrossRef J. Hansryd, P.A. Andrekson, M. Westlund, J. Li, P.O. Hedekvist: Fiber-based optical parametric amplifiers and their applications, IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002)CrossRef
Zurück zum Zitat M.E. Marhic, P.A. Andrekson, P. Petropoulos, S. Radic, C. Peucheret, M. Jazayerifar: Fiber optical parametric amplifiers in optical communication systems, Laser Photon. Rev. 9(1), 50–74 (2015)CrossRef M.E. Marhic, P.A. Andrekson, P. Petropoulos, S. Radic, C. Peucheret, M. Jazayerifar: Fiber optical parametric amplifiers in optical communication systems, Laser Photon. Rev. 9(1), 50–74 (2015)CrossRef
Zurück zum Zitat J.P. Gordon, L.F. Mollenauer: Phase noise in photonic communications systems using linear amplifiers, Opt. Lett. 15(23), 1351–1353 (1990)CrossRef J.P. Gordon, L.F. Mollenauer: Phase noise in photonic communications systems using linear amplifiers, Opt. Lett. 15(23), 1351–1353 (1990)CrossRef
Zurück zum Zitat H. Kim, A.H. Gnauck: Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise, IEEE Photonics Technol. Lett. 15(2), 320–322 (2003)CrossRef H. Kim, A.H. Gnauck: Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise, IEEE Photonics Technol. Lett. 15(2), 320–322 (2003)CrossRef
Zurück zum Zitat K.-P. Ho: Error probability of DPSK signals with cross-phase modulation induced nonlinear phase noise, IEEE J. Sel. Topics Quantum Electron. 10(2), 421–427 (2004)CrossRef K.-P. Ho: Error probability of DPSK signals with cross-phase modulation induced nonlinear phase noise, IEEE J. Sel. Topics Quantum Electron. 10(2), 421–427 (2004)CrossRef
Zurück zum Zitat K.-P. Ho, H.-C. Wang: Effect of dispersion on nonlinear phase noise, Opt. Lett. 31(14), 2109–2111 (2006)CrossRef K.-P. Ho, H.-C. Wang: Effect of dispersion on nonlinear phase noise, Opt. Lett. 31(14), 2109–2111 (2006)CrossRef
Zurück zum Zitat R. Hui, K.R. Demarest, C.T. Allen: Cross-phase modulation in multispan WDM optical fiber systems, J. Lightwave Technol. 17(6), 1018–1026 (1999)CrossRef R. Hui, K.R. Demarest, C.T. Allen: Cross-phase modulation in multispan WDM optical fiber systems, J. Lightwave Technol. 17(6), 1018–1026 (1999)CrossRef
Zurück zum Zitat A. Carena, V. Curri, R. Gaudino, P. Poggiolini, S. Benedetto: New analytical results on fiber parametric gain and its effects on ASE noise, IEEE Photonics Technol. Lett. 9(4), 535–537 (1997)CrossRef A. Carena, V. Curri, R. Gaudino, P. Poggiolini, S. Benedetto: New analytical results on fiber parametric gain and its effects on ASE noise, IEEE Photonics Technol. Lett. 9(4), 535–537 (1997)CrossRef
Zurück zum Zitat B. Xu, M. Brandt-Pearce: Optical fiber parametric-gain-induced noise coloring and amplification by modulated signals, J. Opt. Soc. Am. B 21(3), 499–513 (2004)CrossRef B. Xu, M. Brandt-Pearce: Optical fiber parametric-gain-induced noise coloring and amplification by modulated signals, J. Opt. Soc. Am. B 21(3), 499–513 (2004)CrossRef
Zurück zum Zitat P. Serena, A. Orlandini, A. Bononi: Parametric-gain approach to the analysis of single-channel DPSK/DQPSK systems with nonlinear phase noise, J. Lightwave Technol. 24(5), 2026–2037 (2006)CrossRef P. Serena, A. Orlandini, A. Bononi: Parametric-gain approach to the analysis of single-channel DPSK/DQPSK systems with nonlinear phase noise, J. Lightwave Technol. 24(5), 2026–2037 (2006)CrossRef
Zurück zum Zitat D. Rafique, J. Zhao, D. Ellis: Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission, Opt. Express 19(6), 5219–5224 (2011)CrossRef D. Rafique, J. Zhao, D. Ellis: Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission, Opt. Express 19(6), 5219–5224 (2011)CrossRef
Zurück zum Zitat L. Beygi, N. Irukulapati, E. Agrell, P. Johannisson, M. Karlsson, H. Wymeersch, P. Serena, A. Bononi: On nonlinearly-induced noise in single-channel optical links with digital backpropagation, Opt. Express 21, 26376–26386 (2013)CrossRef L. Beygi, N. Irukulapati, E. Agrell, P. Johannisson, M. Karlsson, H. Wymeersch, P. Serena, A. Bononi: On nonlinearly-induced noise in single-channel optical links with digital backpropagation, Opt. Express 21, 26376–26386 (2013)CrossRef
Zurück zum Zitat A.D. Ellis, M.E. McCarthy, M.A.Z. Al-Khateeb, S. Sygletos: Capacity limits of systems employing multiple optical phase conjugators, Opt. Express 23(16), 20381 (2015)CrossRef A.D. Ellis, M.E. McCarthy, M.A.Z. Al-Khateeb, S. Sygletos: Capacity limits of systems employing multiple optical phase conjugators, Opt. Express 23(16), 20381 (2015)CrossRef
Zurück zum Zitat D. Lavery, D. Ives, G. Liga, A. Alvarado, S.J. Savory, P. Bayvel: The benefit of split nonlinearity compensation for single-channel optical fiber communications, IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016)CrossRef D. Lavery, D. Ives, G. Liga, A. Alvarado, S.J. Savory, P. Bayvel: The benefit of split nonlinearity compensation for single-channel optical fiber communications, IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016)CrossRef
Zurück zum Zitat A. Ghazisaeidi: A theory of nonlinear interactions between signal and amplified spontaneous emission noise in coherent wavelength division multiplexed systems, J. Lightwave Technol. 35(23), 5150–5175 (2017)CrossRef A. Ghazisaeidi: A theory of nonlinear interactions between signal and amplified spontaneous emission noise in coherent wavelength division multiplexed systems, J. Lightwave Technol. 35(23), 5150–5175 (2017)CrossRef
Zurück zum Zitat I.P. Kaminow, T. Li, A.E. Willner: Optical Fiber Telecommunications Volume VIB: Systems and Networks (Academic, New York 2013) I.P. Kaminow, T. Li, A.E. Willner: Optical Fiber Telecommunications Volume VIB: Systems and Networks (Academic, New York 2013)
Zurück zum Zitat G.J. Foschini, C.D. Poole: Statistical theory of polarization dispersion in single mode fibers, J. Lightwave Technol. 9(11), 1439–1456 (1991)CrossRef G.J. Foschini, C.D. Poole: Statistical theory of polarization dispersion in single mode fibers, J. Lightwave Technol. 9(11), 1439–1456 (1991)CrossRef
Zurück zum Zitat M. Karlsson: Probability density functions of the differential group delay in optical fiber communication systems, J. Lightwave Technol. 19(3), 324–331 (2001)MathSciNetCrossRef M. Karlsson: Probability density functions of the differential group delay in optical fiber communication systems, J. Lightwave Technol. 19(3), 324–331 (2001)MathSciNetCrossRef
Zurück zum Zitat C.D. Poole: Statistical treatment of polarization dispersion in single-mode fiber, Opt. Lett. 13(8), 687 (1988)CrossRef C.D. Poole: Statistical treatment of polarization dispersion in single-mode fiber, Opt. Lett. 13(8), 687 (1988)CrossRef
Zurück zum Zitat D. Nolan, X. Chen, M.-J. Li: Fibers with low polarization-mode dispersion, J. Lightwave Technol. 22(4), 1066–1077 (2004)CrossRef D. Nolan, X. Chen, M.-J. Li: Fibers with low polarization-mode dispersion, J. Lightwave Technol. 22(4), 1066–1077 (2004)CrossRef
Zurück zum Zitat D. Breuer, H. Tessmann, A. Gladisch, H.M. Foisel, G. Neumann, H. Reiner, H. Cremer: Measurements of PMD in the installed fiber plant of Deutsche Telekom. In: Proc. LEOS 2003 (2003) D. Breuer, H. Tessmann, A. Gladisch, H.M. Foisel, G. Neumann, H. Reiner, H. Cremer: Measurements of PMD in the installed fiber plant of Deutsche Telekom. In: Proc. LEOS 2003 (2003)
Zurück zum Zitat S. Haykin: Adaptive Filter Theory, 3rd edn. (Prentice, Upper Saddle River 1996)MATH S. Haykin: Adaptive Filter Theory, 3rd edn. (Prentice, Upper Saddle River 1996)MATH
Zurück zum Zitat B.C. Collings, L. Boivin: Nonlinear polarization evolution induced by cross-phase modulation and its impact on transmission systems, IEEE Photonics Technol. Lett. 12, 1582–1584 (2000)CrossRef B.C. Collings, L. Boivin: Nonlinear polarization evolution induced by cross-phase modulation and its impact on transmission systems, IEEE Photonics Technol. Lett. 12, 1582–1584 (2000)CrossRef
Zurück zum Zitat M. Karlsson, H. Sunnerud: Effects of nonlinearities on PMD-induced system impairments, J. Lightwave Technol. 24(11), 4127–4137 (2006)CrossRef M. Karlsson, H. Sunnerud: Effects of nonlinearities on PMD-induced system impairments, J. Lightwave Technol. 24(11), 4127–4137 (2006)CrossRef
Zurück zum Zitat M. Winter, C.-A. Bunge, D. Setti, K. Petermann: A statistical treatment of cross-polarization modulation in DWDM systems, J. Lightwave Technol. 27(17), 3739–3751 (2009)CrossRef M. Winter, C.-A. Bunge, D. Setti, K. Petermann: A statistical treatment of cross-polarization modulation in DWDM systems, J. Lightwave Technol. 27(17), 3739–3751 (2009)CrossRef
Zurück zum Zitat N. Rossi, P. Serena, A. Bononi: Symbol-rate dependence of dominant nonlinearity and reach in coherent WDM links, J. Lightwave Technol. 33(14), 3132–3143 (2015) N. Rossi, P. Serena, A. Bononi: Symbol-rate dependence of dominant nonlinearity and reach in coherent WDM links, J. Lightwave Technol. 33(14), 3132–3143 (2015)
Zurück zum Zitat C. Xie: WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation, Opt. Express 17(6), 4815–4823 (2009)CrossRef C. Xie: WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation, Opt. Express 17(6), 4815–4823 (2009)CrossRef
Zurück zum Zitat M. Boroditsky, M. Bourd, M. Tur: Effect of nonlinearities on PMD, J. Lightwave Technol. 24, 4100–4107 (2006)CrossRef M. Boroditsky, M. Bourd, M. Tur: Effect of nonlinearities on PMD, J. Lightwave Technol. 24, 4100–4107 (2006)CrossRef
Zurück zum Zitat O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Bertolini, M. Salsi, S. Bigo: Demonstration of the benefits brought by PMD in polarization-multiplexed systems. In: Proc. Europ. Conf. Opt. Commun. (ECOC) 2010, Turin, paper Th.10.E.4 (2010) O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Bertolini, M. Salsi, S. Bigo: Demonstration of the benefits brought by PMD in polarization-multiplexed systems. In: Proc. Europ. Conf. Opt. Commun. (ECOC) 2010, Turin, paper Th.10.E.4 (2010)
Zurück zum Zitat P. Serena, N. Rossi, O. Bertran-Pardo, J. Renaudier, A. Vannucci, A. Bononi: Intra- versus inter-channel PMD in linearly compensated coherent PDM-PSK nonlinear transmissions, J. Lightwave Technol. 29(11), 1691–1700 (2011)CrossRef P. Serena, N. Rossi, O. Bertran-Pardo, J. Renaudier, A. Vannucci, A. Bononi: Intra- versus inter-channel PMD in linearly compensated coherent PDM-PSK nonlinear transmissions, J. Lightwave Technol. 29(11), 1691–1700 (2011)CrossRef
Zurück zum Zitat G. Gao, X. Chen, W. Shieh: Influence of PMD on nonlinearity compensation using digital back propagation, Opt. Express 20, 14406–14418 (2012)CrossRef G. Gao, X. Chen, W. Shieh: Influence of PMD on nonlinearity compensation using digital back propagation, Opt. Express 20, 14406–14418 (2012)CrossRef
Zurück zum Zitat N. Rossi, P. Serena, A. Bononi: Stratified-sampling estimation of PDL-induced outage probability in nonlinear coherent systems, J. Lightwave Technol. 32(24), 4905–4911 (2014)CrossRef N. Rossi, P. Serena, A. Bononi: Stratified-sampling estimation of PDL-induced outage probability in nonlinear coherent systems, J. Lightwave Technol. 32(24), 4905–4911 (2014)CrossRef
Zurück zum Zitat A. Mecozzi, M. Shtaif: Signal-to-noise-ratio degradation caused by polarization-dependent loss and the effect of dynamic gain equalization, J. Lightwave Technol. 22(8), 1856–1871 (2004)CrossRef A. Mecozzi, M. Shtaif: Signal-to-noise-ratio degradation caused by polarization-dependent loss and the effect of dynamic gain equalization, J. Lightwave Technol. 22(8), 1856–1871 (2004)CrossRef
Zurück zum Zitat M. Karlsson, M. Petersson: Quaternion approach to PMD and PDL phenomena in optical fiber systems, J. Lightwave Technol. 22(4), 1137–1146 (2004)CrossRef M. Karlsson, M. Petersson: Quaternion approach to PMD and PDL phenomena in optical fiber systems, J. Lightwave Technol. 22(4), 1137–1146 (2004)CrossRef
Zurück zum Zitat Z. Tao, L. Dou, T. Hoshida, J.C. Rasmussen: A fast method to simulate the PDL impact on dual-polarization coherent systems, IEEE Photonics Technol. Lett. 21(24), 1882–1884 (2009)CrossRef Z. Tao, L. Dou, T. Hoshida, J.C. Rasmussen: A fast method to simulate the PDL impact on dual-polarization coherent systems, IEEE Photonics Technol. Lett. 21(24), 1882–1884 (2009)CrossRef
Zurück zum Zitat N. Rossi, P. Serena, A. Bononi: Polarization-dependent loss impact on coherent optical systems in presence of fiber nonlinearity, IEEE Photonics Technol. Lett. 26(4), 334–337 (2014)CrossRef N. Rossi, P. Serena, A. Bononi: Polarization-dependent loss impact on coherent optical systems in presence of fiber nonlinearity, IEEE Photonics Technol. Lett. 26(4), 334–337 (2014)CrossRef
Zurück zum Zitat O. Vassilieva, S. Oda, T. Hoshida, J.C. Rasmussen, M. Sekiya: Experimental investigation of the statistics of the interplay between nonlinear and PDL effects in polarization multiplexed systems. In: Proc. OFC 2013, Vol. OM3B.6 (2013) pp. 6–8 O. Vassilieva, S. Oda, T. Hoshida, J.C. Rasmussen, M. Sekiya: Experimental investigation of the statistics of the interplay between nonlinear and PDL effects in polarization multiplexed systems. In: Proc. OFC 2013, Vol. OM3B.6 (2013) pp. 6–8
Zurück zum Zitat D.A. Morero, M.A. Castrillon, A. Aguirre, M.R. Hueda, O.E. Agazzi: Design tradeoffs and challenges in practical coherent optical transceiver implementations, J. Lightwave Technol. 34(1), 121–136 (2016)CrossRef D.A. Morero, M.A. Castrillon, A. Aguirre, M.R. Hueda, O.E. Agazzi: Design tradeoffs and challenges in practical coherent optical transceiver implementations, J. Lightwave Technol. 34(1), 121–136 (2016)CrossRef
Zurück zum Zitat A. Alvarado, E. Agrell, D. Lavery, R. Maher, P. Bayvel: Replacing the soft-decision FEC limit paradigm in the design of optical communication systems, J. Lightwave Technol. 34(2), 707–721 (2016)CrossRef A. Alvarado, E. Agrell, D. Lavery, R. Maher, P. Bayvel: Replacing the soft-decision FEC limit paradigm in the design of optical communication systems, J. Lightwave Technol. 34(2), 707–721 (2016)CrossRef
Zurück zum Zitat T.M. Cover, J.A. Thomas: Elements of Information Theory, 2nd edn. (Wiley, Hoboken 2005)MATHCrossRef T.M. Cover, J.A. Thomas: Elements of Information Theory, 2nd edn. (Wiley, Hoboken 2005)MATHCrossRef
Zurück zum Zitat D.M. Arnold, H.-A. Loeliger, P.O. Vontobel, A. Kavvcic, W. Zeng: Simulation-based computation of information rates for channels with memory, IEEE Trans. Inf. Theory 52(8), 3498–3508 (2006)MathSciNetMATHCrossRef D.M. Arnold, H.-A. Loeliger, P.O. Vontobel, A. Kavvcic, W. Zeng: Simulation-based computation of information rates for channels with memory, IEEE Trans. Inf. Theory 52(8), 3498–3508 (2006)MathSciNetMATHCrossRef
Zurück zum Zitat I.B. Djordjevic, B. Vasic, M. Ivkovic, I. Gabitov: Achievable information rates for high-speed long-haul optical transmission, J. Lightwave Technol. 23(11), 3755–3763 (2005)CrossRef I.B. Djordjevic, B. Vasic, M. Ivkovic, I. Gabitov: Achievable information rates for high-speed long-haul optical transmission, J. Lightwave Technol. 23(11), 3755–3763 (2005)CrossRef
Zurück zum Zitat G. Colavolpe, T. Foggi, A. Modenini, A. Piemontese: Faster-than-Nyquist and beyond: How to improve spectral efficiency by accepting interference, Opt. Express 19, 26600–26609 (2011)CrossRef G. Colavolpe, T. Foggi, A. Modenini, A. Piemontese: Faster-than-Nyquist and beyond: How to improve spectral efficiency by accepting interference, Opt. Express 19, 26600–26609 (2011)CrossRef
Zurück zum Zitat N. Merhav, G. Kaplan, A. Lapidoth, S. Shamai: On information rates for mismatched decoders, IEEE Trans. Inform. Theory 40(6), 1953–1967 (1994)MATHCrossRef N. Merhav, G. Kaplan, A. Lapidoth, S. Shamai: On information rates for mismatched decoders, IEEE Trans. Inform. Theory 40(6), 1953–1967 (1994)MATHCrossRef
Zurück zum Zitat R.E. Blahut: Principles and Practice of Information Theory (Addison-Wesley, Boston 1988)MATH R.E. Blahut: Principles and Practice of Information Theory (Addison-Wesley, Boston 1988)MATH
Zurück zum Zitat A. Guillén i Fàbregas, A. Martinez, G. Caire: Bit-interleaved coded modulation, Found. Trends Commun. Inf. Theory 5(1), 1–153 (2008)MATH A. Guillén i Fàbregas, A. Martinez, G. Caire: Bit-interleaved coded modulation, Found. Trends Commun. Inf. Theory 5(1), 1–153 (2008)MATH
Zurück zum Zitat M. Karlsson, E. Agrell: Multidimensional modulation and coding in optical transport, J. Lightwave Technol. 35(4), 876–884 (2017)CrossRef M. Karlsson, E. Agrell: Multidimensional modulation and coding in optical transport, J. Lightwave Technol. 35(4), 876–884 (2017)CrossRef
Zurück zum Zitat L. Schmalen, A. Alvarado, R. Rios-Müller: Performance prediction of nonbinary forward error correction in optical transmission experiments, J. Lightwave Technol. 35(4), 1015–1027 (2017)CrossRef L. Schmalen, A. Alvarado, R. Rios-Müller: Performance prediction of nonbinary forward error correction in optical transmission experiments, J. Lightwave Technol. 35(4), 1015–1027 (2017)CrossRef
Zurück zum Zitat J. Cho, L. Schmalen, P.J. Winzer: Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM. In: Proc. Europ. Conf. Opt. Commun. (ECOC) 2017, Göteborg, Vol. M.2.D.2. (2017) J. Cho, L. Schmalen, P.J. Winzer: Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM. In: Proc. Europ. Conf. Opt. Commun. (ECOC) 2017, Göteborg, Vol. M.2.D.2. (2017)
Zurück zum Zitat T. Yoshida, M. Karlsson, E. Agrell: Performance metrics for systems with soft-decision FEC and probabilistic shaping, IEEE Photonics Technol. Lett. 29(23), 2111–2114 (2017)CrossRef T. Yoshida, M. Karlsson, E. Agrell: Performance metrics for systems with soft-decision FEC and probabilistic shaping, IEEE Photonics Technol. Lett. 29(23), 2111–2114 (2017)CrossRef
Zurück zum Zitat F. Vacondio, O. Rival, C. Simonneau, E. Grellier, A. Bononi, L. Lorcy, J.-C. Antona, S. Bigo: On nonlinear distortions of highly dispersive optical coherent systems, Opt. Express 20(2), 1022–1032 (2012)CrossRef F. Vacondio, O. Rival, C. Simonneau, E. Grellier, A. Bononi, L. Lorcy, J.-C. Antona, S. Bigo: On nonlinear distortions of highly dispersive optical coherent systems, Opt. Express 20(2), 1022–1032 (2012)CrossRef
Zurück zum Zitat A. Bononi, P. Serena, N. Rossi, E. Grellier, F. Vacondio: Modeling nonlinearity in coherent transmissions with dominant intrachannel-four-wave-mixing, Opt. Express 20, 7777–7791 (2012)CrossRef A. Bononi, P. Serena, N. Rossi, E. Grellier, F. Vacondio: Modeling nonlinearity in coherent transmissions with dominant intrachannel-four-wave-mixing, Opt. Express 20, 7777–7791 (2012)CrossRef
Zurück zum Zitat V. Curri, A. Carena, A. Arduino: Design strategies and merit of system parameters for uniform uncompensated links supporting Nyquist-WDM transmission, J. Lightwave Technol. 33(18), 3921–3932 (2015)CrossRef V. Curri, A. Carena, A. Arduino: Design strategies and merit of system parameters for uniform uncompensated links supporting Nyquist-WDM transmission, J. Lightwave Technol. 33(18), 3921–3932 (2015)CrossRef
Zurück zum Zitat I. Tomkos, S. Azodolmolky, J. Solé-Pareta, D. Careglio, E. Palkopoulou: A tutorial on the flexible optical networking paradigm: State of the art, trends, and research challenges, Proc. IEEE 102(9), 1317–1337 (2014)CrossRef I. Tomkos, S. Azodolmolky, J. Solé-Pareta, D. Careglio, E. Palkopoulou: A tutorial on the flexible optical networking paradigm: State of the art, trends, and research challenges, Proc. IEEE 102(9), 1317–1337 (2014)CrossRef
Zurück zum Zitat G. Zhang, M. De Leenheer, A. Morea, B. Mukherjee: A survey on OFDM-based elastic core optical networking, IEEE Commun. Surv. Tutor. 15, 65–87 (2013)CrossRef G. Zhang, M. De Leenheer, A. Morea, B. Mukherjee: A survey on OFDM-based elastic core optical networking, IEEE Commun. Surv. Tutor. 15, 65–87 (2013)CrossRef
Zurück zum Zitat S. Azodolmolky, M. Angelou, I. Tomkos, A. Morea, Y. Pointurier, J. Solé-Pareta: A comparative study of impairments aware optical networks planning tools. In: Broadband Communications, Networks, and Systems. BROADNETS 2010, Lect. Notes Inst. Comp. Sci. Soc. Inf. Telecomm. Eng., Vol. 66 (2012) pp. 491–500 S. Azodolmolky, M. Angelou, I. Tomkos, A. Morea, Y. Pointurier, J. Solé-Pareta: A comparative study of impairments aware optical networks planning tools. In: Broadband Communications, Networks, and Systems. BROADNETS 2010, Lect. Notes Inst. Comp. Sci. Soc. Inf. Telecomm. Eng., Vol. 66 (2012) pp. 491–500
Zurück zum Zitat R. Pastorelli, G. Bosco, S. Piciaccia, F. Forghieri: Network planning strategies for next-generation flexible optical networks, J. Opt. Commun. Netw. 7(3), A511–A525 (2015)CrossRef R. Pastorelli, G. Bosco, S. Piciaccia, F. Forghieri: Network planning strategies for next-generation flexible optical networks, J. Opt. Commun. Netw. 7(3), A511–A525 (2015)CrossRef
Zurück zum Zitat E. Palkopoulou, G. Bosco, A. Carena, D. Klonidis, P. Poggiolini, I. Tomkos: Nyquist-WDM-based flexible optical networks: exploring physical layer design parameters, J. Lightwave Technol. 31(14), 2332–2339 (2013)CrossRef E. Palkopoulou, G. Bosco, A. Carena, D. Klonidis, P. Poggiolini, I. Tomkos: Nyquist-WDM-based flexible optical networks: exploring physical layer design parameters, J. Lightwave Technol. 31(14), 2332–2339 (2013)CrossRef
Zurück zum Zitat S.J. Savory: Congestion aware routing in nonlinear elastic optical networks, IEEE Photonics Technol. Lett. 26(10), 1057–1060 (2015)CrossRef S.J. Savory: Congestion aware routing in nonlinear elastic optical networks, IEEE Photonics Technol. Lett. 26(10), 1057–1060 (2015)CrossRef
Zurück zum Zitat V. Curri, M. Cantono, R. Gaudino: Elastic all-optical networks: a new paradigm enabled by the physical layer. How to optimize network performances?, J. Lightwave Technol. 35, 1211–1221 (2017)CrossRef V. Curri, M. Cantono, R. Gaudino: Elastic all-optical networks: a new paradigm enabled by the physical layer. How to optimize network performances?, J. Lightwave Technol. 35, 1211–1221 (2017)CrossRef
Zurück zum Zitat D.J. Ives, A. Alvarado, S.J. Savory: Throughput gains from adaptive transceivers in nonlinear elastic optical networks, J. Lightwave Technol. 35(6), 1280–1289 (2017)CrossRef D.J. Ives, A. Alvarado, S.J. Savory: Throughput gains from adaptive transceivers in nonlinear elastic optical networks, J. Lightwave Technol. 35(6), 1280–1289 (2017)CrossRef
Zurück zum Zitat C. Rottondi, L. Barletta, A. Giusti, M. Tornatore: A machine learning method for quality of transmission estimation of unestablished lightpaths, J. Opt. Commun. Netw. 10(2), A286 (2018)CrossRef C. Rottondi, L. Barletta, A. Giusti, M. Tornatore: A machine learning method for quality of transmission estimation of unestablished lightpaths, J. Opt. Commun. Netw. 10(2), A286 (2018)CrossRef
Zurück zum Zitat L. Yan, E. Agrell, H. Wymeersch, P. Johannisson, R. Di Taranto, M. Brandt-Pearce: Link-level resource allocation for flexible-grid nonlinear fiber-optic communication systems, IEEE Photonics Technol. Lett. 27(12), 1250–1253 (2015)CrossRef L. Yan, E. Agrell, H. Wymeersch, P. Johannisson, R. Di Taranto, M. Brandt-Pearce: Link-level resource allocation for flexible-grid nonlinear fiber-optic communication systems, IEEE Photonics Technol. Lett. 27(12), 1250–1253 (2015)CrossRef
Zurück zum Zitat L. Yan, E. Agrell, H. Wymeersch, M. Brandt-Pearce: Resource allocation for flexible-grid optical networks with nonlinear channel model, J. Opt. Commun. Netw. 7(11), B101–B108 (2015)CrossRef L. Yan, E. Agrell, H. Wymeersch, M. Brandt-Pearce: Resource allocation for flexible-grid optical networks with nonlinear channel model, J. Opt. Commun. Netw. 7(11), B101–B108 (2015)CrossRef
Zurück zum Zitat J. Zhao, H. Wymeersch, E. Agrell: Nonlinear impairment-aware static resource allocation in elastic optical networks, J. Lightwave Technol. 32(22), 4554–4564 (2015)CrossRef J. Zhao, H. Wymeersch, E. Agrell: Nonlinear impairment-aware static resource allocation in elastic optical networks, J. Lightwave Technol. 32(22), 4554–4564 (2015)CrossRef
Zurück zum Zitat M.N. Dharmaweera, J. Zhao, L. Yan, M. Karlsson, E. Agrell: Traffic-grooming- and multipath- routing-enabled impairment-aware elastic optical networks, J. Opt. Commun. Netw. 8(2), 58–70 (2016)CrossRef M.N. Dharmaweera, J. Zhao, L. Yan, M. Karlsson, E. Agrell: Traffic-grooming- and multipath- routing-enabled impairment-aware elastic optical networks, J. Opt. Commun. Netw. 8(2), 58–70 (2016)CrossRef
Zurück zum Zitat D.J. Ives, P. Bayvel, S.J. Savory: Adapting transmitter power and modulation format to improve optical network performance utilizing the Gaussian noise model of nonlinear impairments, J. Lightwave Technol. 32(21), 3485 (2014)CrossRef D.J. Ives, P. Bayvel, S.J. Savory: Adapting transmitter power and modulation format to improve optical network performance utilizing the Gaussian noise model of nonlinear impairments, J. Lightwave Technol. 32(21), 3485 (2014)CrossRef
Zurück zum Zitat D.J. Ives, P. Bayvel, S.J. Savory: Routing, modulation, spectrum and launch power assignment to maximize the traffic throughput of a nonlinear optical mesh network, Photon. Netw. Commun. 29(3), 244–256 (2015)CrossRef D.J. Ives, P. Bayvel, S.J. Savory: Routing, modulation, spectrum and launch power assignment to maximize the traffic throughput of a nonlinear optical mesh network, Photon. Netw. Commun. 29(3), 244–256 (2015)CrossRef
Zurück zum Zitat K. Christodoulopoulos, I. Tomkos, E.A. Varvarigos: Elastic bandwidth allocation in flexible OFDM-based optical networks, J. Lightwave Technol. 29, 1354–1366 (2011)CrossRef K. Christodoulopoulos, I. Tomkos, E.A. Varvarigos: Elastic bandwidth allocation in flexible OFDM-based optical networks, J. Lightwave Technol. 29, 1354–1366 (2011)CrossRef
Zurück zum Zitat L. Yan, E. Agrell, M.N. Dharmaweera, H. Wymeersch: Joint assignment of power, routing, and spectrum in static flexible-grid networks, J. Lightwave Technol. 35(10), 1766–1774 (2017)CrossRef L. Yan, E. Agrell, M.N. Dharmaweera, H. Wymeersch: Joint assignment of power, routing, and spectrum in static flexible-grid networks, J. Lightwave Technol. 35(10), 1766–1774 (2017)CrossRef
Zurück zum Zitat Y. Xu: Resource Allocation in Elastic Optical Networks with Physical-Layer Impairments, Dissertation, University of Virginia (2017) Y. Xu: Resource Allocation in Elastic Optical Networks with Physical-Layer Impairments, Dissertation, University of Virginia (2017)
Zurück zum Zitat A. Bononi, P. Serena, A. Morea, G. Picchi: Regeneration savings in flexible optical networks with a new load-aware reach maximization, Opt. Switch. Netw. 19, 123–134 (2016)CrossRef A. Bononi, P. Serena, A. Morea, G. Picchi: Regeneration savings in flexible optical networks with a new load-aware reach maximization, Opt. Switch. Netw. 19, 123–134 (2016)CrossRef
Zurück zum Zitat T. Panayiotou, S.P. Chatzis, G. Ellinas: Performance analysis of a data-driven quality-of-transmission decision approach on a dynamic multicast-capable metro optical network, J. Opt. Commun. Netw. 9(1), 98–108 (2017)CrossRef T. Panayiotou, S.P. Chatzis, G. Ellinas: Performance analysis of a data-driven quality-of-transmission decision approach on a dynamic multicast-capable metro optical network, J. Opt. Commun. Netw. 9(1), 98–108 (2017)CrossRef
Zurück zum Zitat J.C. Cartledge, F.P. Guiomar, F.R. Kschischang, G. Liga, M.P. Yankov: Digital signal processing for fiber nonlinearities, Opt. Express 25(3), 1916–1936 (2017)CrossRef J.C. Cartledge, F.P. Guiomar, F.R. Kschischang, G. Liga, M.P. Yankov: Digital signal processing for fiber nonlinearities, Opt. Express 25(3), 1916–1936 (2017)CrossRef
Zurück zum Zitat V. Kamalov, L. Jovanovski, V. Vusirikala, S. Zhang, F. Yaman, K. Nakamura, T. Inoue, E. Mateo, Y. Inada: Evolution from 8QAM live traffic to PS 64-QAM with neural-network based nonlinearity compensation on 11000 km open subsea cable. In: Proc. OFC 2018, post-deadline paper Th4D.5, San Diego (2018) V. Kamalov, L. Jovanovski, V. Vusirikala, S. Zhang, F. Yaman, K. Nakamura, T. Inoue, E. Mateo, Y. Inada: Evolution from 8QAM live traffic to PS 64-QAM with neural-network based nonlinearity compensation on 11000 km open subsea cable. In: Proc. OFC 2018, post-deadline paper Th4D.5, San Diego (2018)
Zurück zum Zitat A.D. Ellis, M.A. Zaki Al Khateeb, M.E. McCarthy: Impact of optical phase conjugation on the nonlinear Shannon limit, J. Lightwave Technol. 35(4), 792–798 (2017)CrossRef A.D. Ellis, M.A. Zaki Al Khateeb, M.E. McCarthy: Impact of optical phase conjugation on the nonlinear Shannon limit, J. Lightwave Technol. 35(4), 792–798 (2017)CrossRef
Zurück zum Zitat R.-J. Essiambre, P.J. Winzer: Fibre nonlinearities in electronically pre-distorted transmission. In: Proc. Europ. Conf. Opt. Commun., paper Tu.3.2.2 (2005) R.-J. Essiambre, P.J. Winzer: Fibre nonlinearities in electronically pre-distorted transmission. In: Proc. Europ. Conf. Opt. Commun., paper Tu.3.2.2 (2005)
Zurück zum Zitat X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, G. Li: Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing, Opt. Express 16, 880–888 (2008)CrossRef X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, G. Li: Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing, Opt. Express 16, 880–888 (2008)CrossRef
Zurück zum Zitat E. Ip, J.M. Kahn: Compensation of dispersion and nonlinear impairments using digital backpropagation, J. Lightwave Technol. 26(20), 3416–3425 (2008)CrossRef E. Ip, J.M. Kahn: Compensation of dispersion and nonlinear impairments using digital backpropagation, J. Lightwave Technol. 26(20), 3416–3425 (2008)CrossRef
Zurück zum Zitat S.J. Savory, G. Gavioli, E. Torrengo, P. Poggiolini: Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer, IEEE Photonics Technol. Lett. 22(10), 673–675 (2010)CrossRef S.J. Savory, G. Gavioli, E. Torrengo, P. Poggiolini: Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer, IEEE Photonics Technol. Lett. 22(10), 673–675 (2010)CrossRef
Zurück zum Zitat G. Liga, T. Xu, A. Alvarado, R.I. Killey, P. Bayvel: On the performance of multichannel digital backpropagation in high-capacity longhaul optical transmission, Opt. Express 22, 30053–30062 (2014)CrossRef G. Liga, T. Xu, A. Alvarado, R.I. Killey, P. Bayvel: On the performance of multichannel digital backpropagation in high-capacity longhaul optical transmission, Opt. Express 22, 30053–30062 (2014)CrossRef
Zurück zum Zitat D. Rafique: Fiber nonlinearity compensation: Commercial applications and complexity analysis, J. Lightwave Technol. 34(2), 544–553 (2016)CrossRef D. Rafique: Fiber nonlinearity compensation: Commercial applications and complexity analysis, J. Lightwave Technol. 34(2), 544–553 (2016)CrossRef
Zurück zum Zitat M. Secondini, S. Rommel, G. Meloni, F. Fresi, E. Forestieri, L. Potì: Single-step digital backpropagation for nonlinearity mitigation, Photon. Netw. Commun. 31(3), 493–502 (2016)CrossRef M. Secondini, S. Rommel, G. Meloni, F. Fresi, E. Forestieri, L. Potì: Single-step digital backpropagation for nonlinearity mitigation, Photon. Netw. Commun. 31(3), 493–502 (2016)CrossRef
Zurück zum Zitat L.B. Du, A.J. Lowery: Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems, Opt. Express 18(16), 17075–17088 (2010)CrossRef L.B. Du, A.J. Lowery: Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems, Opt. Express 18(16), 17075–17088 (2010)CrossRef
Zurück zum Zitat L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, J.C. Rasmussen: Implementation efficient nonlinear equalizer based on correlated digital backpropagation. In: Opt. Fiber Commun. Conf., Los Angeles, paper OWW3 (2011) L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, J.C. Rasmussen: Implementation efficient nonlinear equalizer based on correlated digital backpropagation. In: Opt. Fiber Commun. Conf., Los Angeles, paper OWW3 (2011)
Zurück zum Zitat M. Secondini, D. Marsella, E. Forestieri: Enhanced split-step fourier method for digital backpropagation. In: Proc. Europ. Conf. Opt. Commun., paper We.3.3.5 (2014) M. Secondini, D. Marsella, E. Forestieri: Enhanced split-step fourier method for digital backpropagation. In: Proc. Europ. Conf. Opt. Commun., paper We.3.3.5 (2014)
Zurück zum Zitat A. Napoli, Z. Maalej, V.A.J.M. Sleiffer, M. Kuschnerov, D. Rafique, E. Timmers, B. Spinnler, T. Rahman, L.D. Coelho, N. Hanik: Reduced complexity digital back-propagation methods for optical communication systems, J. Lightwave Technol. 32(7), 1351–1362 (2014)CrossRef A. Napoli, Z. Maalej, V.A.J.M. Sleiffer, M. Kuschnerov, D. Rafique, E. Timmers, B. Spinnler, T. Rahman, L.D. Coelho, N. Hanik: Reduced complexity digital back-propagation methods for optical communication systems, J. Lightwave Technol. 32(7), 1351–1362 (2014)CrossRef
Zurück zum Zitat J. Gonçalves, C.S. Martins, F.P. Guiomar, T. Cunha, J. Pedro, A.N. Pinto, P. Lavrador: Nonlinear compensation with DBP aided by a memory polynomial, Opt. Express 24(26), 30309–30316 (2016)CrossRef J. Gonçalves, C.S. Martins, F.P. Guiomar, T. Cunha, J. Pedro, A.N. Pinto, P. Lavrador: Nonlinear compensation with DBP aided by a memory polynomial, Opt. Express 24(26), 30309–30316 (2016)CrossRef
Zurück zum Zitat L. Zhu, G. Li: Folded digital backward propagation for dispersion-managed fiber-optic transmission, Opt. Express 19(7), 5953 (2011)CrossRef L. Zhu, G. Li: Folded digital backward propagation for dispersion-managed fiber-optic transmission, Opt. Express 19(7), 5953 (2011)CrossRef
Zurück zum Zitat Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, J.C. Rasmussen: Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate, J. Lightwave Technol. 29(17), 2570–2576 (2011)CrossRef Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, J.C. Rasmussen: Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate, J. Lightwave Technol. 29(17), 2570–2576 (2011)CrossRef
Zurück zum Zitat Z. Tao, L. Dou, Y. Zhao, W. Yan, T. Oyama, S. Oda, T. Tanimura, T. Hoshida, J.C. Rasmussen: Nonlinear compensation beyond conventional perturbation based algorithms. In: Proc. ACP/IPOC 13, Vol. ATh4E.1 (2013) pp. 4–6 Z. Tao, L. Dou, Y. Zhao, W. Yan, T. Oyama, S. Oda, T. Tanimura, T. Hoshida, J.C. Rasmussen: Nonlinear compensation beyond conventional perturbation based algorithms. In: Proc. ACP/IPOC 13, Vol. ATh4E.1 (2013) pp. 4–6
Zurück zum Zitat Q. Zhuge, M. Reimer, A. Borowiec, M. O'Sullivan, D.V. Plant: Aggressive quantization on perturbation coefficients for nonlinear pre-distortion. In: Proc. OFC 2014, Vol. h4D.7 (2014) Q. Zhuge, M. Reimer, A. Borowiec, M. O'Sullivan, D.V. Plant: Aggressive quantization on perturbation coefficients for nonlinear pre-distortion. In: Proc. OFC 2014, Vol. h4D.7 (2014)
Zurück zum Zitat Y. Gao, J.C. Cartledge, A.S. Karar, S.S.-H. Yam, M. O'Sullivan, C. Laperle, A. Borowiec, K. Roberts: Reducing the complexity of perturbation based nonlinearity pre-compensation using symmetric EDC and pulse shaping, Opt. Express 22(2), 1209 (2014)CrossRef Y. Gao, J.C. Cartledge, A.S. Karar, S.S.-H. Yam, M. O'Sullivan, C. Laperle, A. Borowiec, K. Roberts: Reducing the complexity of perturbation based nonlinearity pre-compensation using symmetric EDC and pulse shaping, Opt. Express 22(2), 1209 (2014)CrossRef
Zurück zum Zitat X. Liang, S. Kumar: Multi-stage perturbation theory for compensating intra-channel nonlinear impairments in fiber-optic links, Opt. Express 22(24), 29733–29745 (2014)CrossRef X. Liang, S. Kumar: Multi-stage perturbation theory for compensating intra-channel nonlinear impairments in fiber-optic links, Opt. Express 22(24), 29733–29745 (2014)CrossRef
Zurück zum Zitat F.P. Guiomar, A. Pinto: Simplified Volterra series nonlinear equalizer for polarization-multiplexed coherent optical systems, J. Lightwave Technol. 31(23), 3879–3891 (2013)CrossRef F.P. Guiomar, A. Pinto: Simplified Volterra series nonlinear equalizer for polarization-multiplexed coherent optical systems, J. Lightwave Technol. 31(23), 3879–3891 (2013)CrossRef
Zurück zum Zitat A. Ghazisaeidi, R.-J. Essiambre: Calculation of coefficients of perturbative nonlinear pre-compensation for Nyquist pulses. In: Proc. Europ. Conf. Opt. Commun. (ECOC), Cannes (2014) A. Ghazisaeidi, R.-J. Essiambre: Calculation of coefficients of perturbative nonlinear pre-compensation for Nyquist pulses. In: Proc. Europ. Conf. Opt. Commun. (ECOC), Cannes (2014)
Zurück zum Zitat A. Ghazisaeidi, I. Fernandez de Jauregui Ruiz, L. Schmalen, P. Tran, C. Simonneau, E. Awwad, B. Uscumlic, P. Brindel, G. Charlet: Submarine transmission systems using digital nonlinear compensation and adaptive rate forward error correction, J. Lightwave Technol. 34(8), 1886–1895 (2016)CrossRef A. Ghazisaeidi, I. Fernandez de Jauregui Ruiz, L. Schmalen, P. Tran, C. Simonneau, E. Awwad, B. Uscumlic, P. Brindel, G. Charlet: Submarine transmission systems using digital nonlinear compensation and adaptive rate forward error correction, J. Lightwave Technol. 34(8), 1886–1895 (2016)CrossRef
Zurück zum Zitat C.B. Czegledi, G. Liga, D. Lavery, M. Karlsson, E. Agrell, S.J. Savory, P. Bayvel: Polarization-mode dispersion aware digital backpropagation. In: Proc. Europ. Conf. Opt. Commun. (ECOC), Düsseldorf (2016) pp. 1091–1093 C.B. Czegledi, G. Liga, D. Lavery, M. Karlsson, E. Agrell, S.J. Savory, P. Bayvel: Polarization-mode dispersion aware digital backpropagation. In: Proc. Europ. Conf. Opt. Commun. (ECOC), Düsseldorf (2016) pp. 1091–1093
Zurück zum Zitat K. Goroshko, H. Louchet, A. Richter: Overcoming performance limitations of digital back propagation due to polarization mode dispersion. In: Proc. Internat. Conf. Transpar. Opt. Netw. (ICTON), Trento, paper Mo.B1.4 (2016) K. Goroshko, H. Louchet, A. Richter: Overcoming performance limitations of digital back propagation due to polarization mode dispersion. In: Proc. Internat. Conf. Transpar. Opt. Netw. (ICTON), Trento, paper Mo.B1.4 (2016)
Zurück zum Zitat C.B. Czegledi, G. Liga, D. Lavery, M. Karlsson, E. Agrell, S.J. Savory, P. Bayvel: Digital backpropagation accounting for polarization-mode dispersion, Opt. Express 25, 1903–1915 (2017)CrossRef C.B. Czegledi, G. Liga, D. Lavery, M. Karlsson, E. Agrell, S.J. Savory, P. Bayvel: Digital backpropagation accounting for polarization-mode dispersion, Opt. Express 25, 1903–1915 (2017)CrossRef
Zurück zum Zitat R. Holzlöhner, V.S. Grigoryan, C.R. Menyuk, W.L. Kath: Accurate calculation of eye diagrams and bit error rates in optical transmission systems using linearization, J. Lightwave Technol. 20(3), 389–400 (2002)CrossRef R. Holzlöhner, V.S. Grigoryan, C.R. Menyuk, W.L. Kath: Accurate calculation of eye diagrams and bit error rates in optical transmission systems using linearization, J. Lightwave Technol. 20(3), 389–400 (2002)CrossRef
Zurück zum Zitat D. Marsella, M. Secondini, E. Forestieri: Maximum likelihood sequence detection for mitigating nonlinear effects, J. Lightwave Technol. 32(5), 908–916 (2014)CrossRef D. Marsella, M. Secondini, E. Forestieri: Maximum likelihood sequence detection for mitigating nonlinear effects, J. Lightwave Technol. 32(5), 908–916 (2014)CrossRef
Zurück zum Zitat N.V. Irukulapati, H. Wymeersch, P. Johannisson, E. Agrell: Stochastic digital backpropagation, IEEE Trans. Commun. 62(11), 3956–3968 (2014)CrossRef N.V. Irukulapati, H. Wymeersch, P. Johannisson, E. Agrell: Stochastic digital backpropagation, IEEE Trans. Commun. 62(11), 3956–3968 (2014)CrossRef
Zurück zum Zitat T.A. Eriksson, T. Fehenberger, P.A. Andrekson, M. Karlsson, N. Hanik, E. Agrell: Impact of 4D channel distribution on the achievable rates in coherent optical communication experiments, J. Lightwave Technol. 34(9), 2256–2266 (2016)CrossRef T.A. Eriksson, T. Fehenberger, P.A. Andrekson, M. Karlsson, N. Hanik, E. Agrell: Impact of 4D channel distribution on the achievable rates in coherent optical communication experiments, J. Lightwave Technol. 34(9), 2256–2266 (2016)CrossRef
Zurück zum Zitat A. Napoli, M. Kuschnerov, C.-Y. Lin, B. Spinnler, M. Bohn, D. Rafique, V.A. Sleiffer, B. Schmauss: Adaptive digital back-propagation for optical communication systems. In: Proc. Opt. Fiber Commun. Conf. 2014, paper M3C.4 (2014) A. Napoli, M. Kuschnerov, C.-Y. Lin, B. Spinnler, M. Bohn, D. Rafique, V.A. Sleiffer, B. Schmauss: Adaptive digital back-propagation for optical communication systems. In: Proc. Opt. Fiber Commun. Conf. 2014, paper M3C.4 (2014)
Zurück zum Zitat E.P. da Silva, R. Asif, K.J. Larsen, D. Zibar: Nonlinear compensation with modified adaptive digital backpropagation in flexigrid networks. In: Proc. Conf. Lasers Electro-Opt. 2015, paper SM2M, San Jose (2015) E.P. da Silva, R. Asif, K.J. Larsen, D. Zibar: Nonlinear compensation with modified adaptive digital backpropagation in flexigrid networks. In: Proc. Conf. Lasers Electro-Opt. 2015, paper SM2M, San Jose (2015)
Zurück zum Zitat W. Shieh, Y. Tang: Ultrahigh-speed signal transmission over nonlinear and dispersive fiber optic channel: the multicarrier advantage, IEEE Photonics J. 2(3), 276–283 (2010)CrossRef W. Shieh, Y. Tang: Ultrahigh-speed signal transmission over nonlinear and dispersive fiber optic channel: the multicarrier advantage, IEEE Photonics J. 2(3), 276–283 (2010)CrossRef
Zurück zum Zitat L.B. Du, A.J. Lowery: Optimizing the subcarrier granularity of coherent optical communications systems, Opt. Express 19(9), 8079 (2011)CrossRef L.B. Du, A.J. Lowery: Optimizing the subcarrier granularity of coherent optical communications systems, Opt. Express 19(9), 8079 (2011)CrossRef
Zurück zum Zitat M. Qiu, Q. Zhuge, X. Xu, M. Chagnon, M. Morsy-Osman, D.V. Plant: Subcarrier multiplexing using DACs for fiber nonlinearity mitigation in coherent optical communication systems. In: Proc. OFC 2014, San Francisco (2014), paper Tu3J.2 M. Qiu, Q. Zhuge, X. Xu, M. Chagnon, M. Morsy-Osman, D.V. Plant: Subcarrier multiplexing using DACs for fiber nonlinearity mitigation in coherent optical communication systems. In: Proc. OFC 2014, San Francisco (2014), paper Tu3J.2
Zurück zum Zitat A. Bononi, N. Rossi, P. Serena: Performance dependence on channel baud-rate of coherent single-carrier WDM systems. In: Proc. Europ. Conf. Opt. Commun. (ECOC), London (2013), paper Th.1.D.5 A. Bononi, N. Rossi, P. Serena: Performance dependence on channel baud-rate of coherent single-carrier WDM systems. In: Proc. Europ. Conf. Opt. Commun. (ECOC), London (2013), paper Th.1.D.5
Zurück zum Zitat P. Poggiolini, A. Nespola, Y. Jiang, G. Bosco, A. Carena, L. Bertignono, S.M. Bilal, S. Abrate, F. Forghieri: Analytical and experimental results on system maximum reach increase through symbol rate optimization, J. Lightwave Technol. 34(8), 1872–1885 (2016)CrossRef P. Poggiolini, A. Nespola, Y. Jiang, G. Bosco, A. Carena, L. Bertignono, S.M. Bilal, S. Abrate, F. Forghieri: Analytical and experimental results on system maximum reach increase through symbol rate optimization, J. Lightwave Technol. 34(8), 1872–1885 (2016)CrossRef
Zurück zum Zitat A. Carbó, J. Renaudier, P. Tran, G. Charlet: Experimental analysis of non linear tolerance dependency of multicarrier modulations versus number of WDM channels. In: Proc. OFC 2013, Anaheim (2016), paper Tu3A.6 A. Carbó, J. Renaudier, P. Tran, G. Charlet: Experimental analysis of non linear tolerance dependency of multicarrier modulations versus number of WDM channels. In: Proc. OFC 2013, Anaheim (2016), paper Tu3A.6
Zurück zum Zitat C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura: Method for solving the Korteweg–de Vries equation, Phys. Rev. Lett. 19(19), 1095–1097 (1967)MATHCrossRef C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura: Method for solving the Korteweg–de Vries equation, Phys. Rev. Lett. 19(19), 1095–1097 (1967)MATHCrossRef
Zurück zum Zitat V.E. Zakharov, A.B. Shabat: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of wave in nonlinear media, Sov. J. Exp. Theor. Phys. 34(1), 62–69 (1972)MathSciNet V.E. Zakharov, A.B. Shabat: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of wave in nonlinear media, Sov. J. Exp. Theor. Phys. 34(1), 62–69 (1972)MathSciNet
Zurück zum Zitat S.V. Manakov: On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Sov. J. Exp. Theor. Phys. 38, 248–253 (1974) S.V. Manakov: On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Sov. J. Exp. Theor. Phys. 38, 248–253 (1974)
Zurück zum Zitat M.J. Ablowitz, H. Segur: Solitons and the Inverse Scattering Transform (SIAM, Philadelphia 1981)MATHCrossRef M.J. Ablowitz, H. Segur: Solitons and the Inverse Scattering Transform (SIAM, Philadelphia 1981)MATHCrossRef
Zurück zum Zitat M.I. Yousefi, F.R. Kschischang: Information transmission using the nonlinear Fourier transform, Part I–III, IEEE Trans. Inf. Theory 60(7), 4312–4369 (2014)MathSciNetMATHCrossRef M.I. Yousefi, F.R. Kschischang: Information transmission using the nonlinear Fourier transform, Part I–III, IEEE Trans. Inf. Theory 60(7), 4312–4369 (2014)MathSciNetMATHCrossRef
Zurück zum Zitat S.K. Turitsyn, J.E. Prilepsky, S. Le Thai, S. Wahls, L.L. Frumin, M. Kamalian, S.A. Derevyanko: Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives, Optica 4(3), 307–322 (2017)CrossRef S.K. Turitsyn, J.E. Prilepsky, S. Le Thai, S. Wahls, L.L. Frumin, M. Kamalian, S.A. Derevyanko: Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives, Optica 4(3), 307–322 (2017)CrossRef
Zurück zum Zitat A. Hasegawa, Y. Kodama: Solitons in Optical Communications (Clarendon, Oxford 1995)MATH A. Hasegawa, Y. Kodama: Solitons in Optical Communications (Clarendon, Oxford 1995)MATH
Zurück zum Zitat A. Hasegawa, T. Nyu: Eigenvalue communication, IEEE J. Lightwave Technol. 11(3), 395–399 (1993)CrossRef A. Hasegawa, T. Nyu: Eigenvalue communication, IEEE J. Lightwave Technol. 11(3), 395–399 (1993)CrossRef
Zurück zum Zitat H. Terauchi, A. Maruta: Eigenvalue modulated optical transmission system based on digital coherent technology. In: OptoElectron. Commun. Conf. (OECC), Kyoto, paper WR2–5 (2013) H. Terauchi, A. Maruta: Eigenvalue modulated optical transmission system based on digital coherent technology. In: OptoElectron. Commun. Conf. (OECC), Kyoto, paper WR2–5 (2013)
Zurück zum Zitat J.E. Prilepsky, S.A. Derevyanko, K.J. Blow, I. Gabitov, S.K. Turitsyn: Nonlinear inverse synthesis and eigenvalue division multi-plexing in optical fiber channels, Phys. Rev. Lett. 113, 013901 (2014)CrossRef J.E. Prilepsky, S.A. Derevyanko, K.J. Blow, I. Gabitov, S.K. Turitsyn: Nonlinear inverse synthesis and eigenvalue division multi-plexing in optical fiber channels, Phys. Rev. Lett. 113, 013901 (2014)CrossRef
Zurück zum Zitat S. Civelli, E. Forestieri, M. Secondini: Why noise and dispersion may seriously hamper nonlinear frequency-division multiplexing, IEEE Photonics Technol. Lett. 29(16), 1332–1335 (2017)CrossRef S. Civelli, E. Forestieri, M. Secondini: Why noise and dispersion may seriously hamper nonlinear frequency-division multiplexing, IEEE Photonics Technol. Lett. 29(16), 1332–1335 (2017)CrossRef
Zurück zum Zitat E.G. Turitsyna, S.K. Turitsyn: Digital signal processing based on inverse scattering transform, Opt. Lett. 38(20), 4186–4188 (2013)CrossRef E.G. Turitsyna, S.K. Turitsyn: Digital signal processing based on inverse scattering transform, Opt. Lett. 38(20), 4186–4188 (2013)CrossRef
Zurück zum Zitat H. Bülow: Experimental demonstration of optical signal detection using nonlinear Fourier transform, J. Lightwave Technol. 33(7), 1433–1439 (2015)CrossRef H. Bülow: Experimental demonstration of optical signal detection using nonlinear Fourier transform, J. Lightwave Technol. 33(7), 1433–1439 (2015)CrossRef
Zurück zum Zitat H. Bülow, V. Aref, W. Idler: Transmission of waveform determined by 7 eigenvalues with PSK-modulated spectral amplitude. In: Europ. Conf. Opt. Commun. (ECOC), paper Tu.3.E.2, Germany (2016) H. Bülow, V. Aref, W. Idler: Transmission of waveform determined by 7 eigenvalues with PSK-modulated spectral amplitude. In: Europ. Conf. Opt. Commun. (ECOC), paper Tu.3.E.2, Germany (2016)
Zurück zum Zitat S. Civelli, E. Forestieri, M. Secondini: Decision-feedback detection strategy for nonlinear frequency-division multiplexing, Opt. Express 26(9), 12057–12071 (2018)CrossRef S. Civelli, E. Forestieri, M. Secondini: Decision-feedback detection strategy for nonlinear frequency-division multiplexing, Opt. Express 26(9), 12057–12071 (2018)CrossRef
Zurück zum Zitat V. Aref, S. Le Thai, H. Bülow: Demonstration of fully nonlinear spectrum modulated system in the highly nonlinear optical transmission regime. In: Proc. Europ. Conf. Opt. Commun. (ECOC), postdeadline paper, Germany (2016) V. Aref, S. Le Thai, H. Bülow: Demonstration of fully nonlinear spectrum modulated system in the highly nonlinear optical transmission regime. In: Proc. Europ. Conf. Opt. Commun. (ECOC), postdeadline paper, Germany (2016)
Zurück zum Zitat A. Maruta, Y. Matsuda: Polarization division multiplexed optical eigenvalue modulation. In: Int. Conf. Photonics Switch. (PS), Florence (2015) pp. 265–267 A. Maruta, Y. Matsuda: Polarization division multiplexed optical eigenvalue modulation. In: Int. Conf. Photonics Switch. (PS), Florence (2015) pp. 265–267
Zurück zum Zitat S. Gaiarin, A.M. Perego, E.P. da Silva, F. Da Ros, D. Zibar: Experimental demonstration of dual polarization nonlinear frequency division multiplexed optical transmission system. In: Proc. Europ. Conf. Opt. Commun., Sweden (2017) S. Gaiarin, A.M. Perego, E.P. da Silva, F. Da Ros, D. Zibar: Experimental demonstration of dual polarization nonlinear frequency division multiplexed optical transmission system. In: Proc. Europ. Conf. Opt. Commun., Sweden (2017)
Zurück zum Zitat M. Kamalian, J.E. Prilepsky, S.T. Le, S.K. Turitsyn: Periodic nonlinear Fourier transform for fiber-optic communications, Part I–II, Opt. Express 24(16), 18353–18381 (2016)CrossRef M. Kamalian, J.E. Prilepsky, S.T. Le, S.K. Turitsyn: Periodic nonlinear Fourier transform for fiber-optic communications, Part I–II, Opt. Express 24(16), 18353–18381 (2016)CrossRef
Zurück zum Zitat I.T. Lima, T.D.S. DeMenezes, V.S. Grigoryan, M. O'Sullivan, C.R. Menyuk: Nonlinear compensation in optical communications systems with normal dispersion fibers using the nonlinear Fourier transform, J. Lightwave Technol. 35(23), 5056–5068 (2017)CrossRef I.T. Lima, T.D.S. DeMenezes, V.S. Grigoryan, M. O'Sullivan, C.R. Menyuk: Nonlinear compensation in optical communications systems with normal dispersion fibers using the nonlinear Fourier transform, J. Lightwave Technol. 35(23), 5056–5068 (2017)CrossRef
Zurück zum Zitat P. Serena, A. Ghazisaeidi, A. Bononi: A new fast and blind cross-polarization modulation digital compensator. In: Proc. Europ. Conf. Opt. Commun. (ECOC) (2012) P. Serena, A. Ghazisaeidi, A. Bononi: A new fast and blind cross-polarization modulation digital compensator. In: Proc. Europ. Conf. Opt. Commun. (ECOC) (2012)
Zurück zum Zitat K. Kojima, D.S. Millar, T. Koike-Akino, K. Parsons: Constant modulus 4D optimized constellation alternative for DP-8QAM. In: Proc. Europ. Conf. Opt. Commun. (ECOC) (2014) K. Kojima, D.S. Millar, T. Koike-Akino, K. Parsons: Constant modulus 4D optimized constellation alternative for DP-8QAM. In: Proc. Europ. Conf. Opt. Commun. (ECOC) (2014)
Zurück zum Zitat T. Fehenberger, A. Alvarado, G. Bocherer, N. Hanik: On probabilistic shaping of quadrature amplitude modulation for the nonlinear fiber channel, J. Lightwave Technol. 34, 5063–5073 (2016)CrossRef T. Fehenberger, A. Alvarado, G. Bocherer, N. Hanik: On probabilistic shaping of quadrature amplitude modulation for the nonlinear fiber channel, J. Lightwave Technol. 34, 5063–5073 (2016)CrossRef
Zurück zum Zitat O. Geller, R. Dar, M. Feder, M. Shtaif: A shaping algorithm for mitigating inter-channel nonlinear phase-noise in nonlinear fiber systems, J. Lightwave Technol. 34, 3884–3889 (2016)CrossRef O. Geller, R. Dar, M. Feder, M. Shtaif: A shaping algorithm for mitigating inter-channel nonlinear phase-noise in nonlinear fiber systems, J. Lightwave Technol. 34, 3884–3889 (2016)CrossRef
Zurück zum Zitat X. Liu, A. Chraplyvy, P. Winzer, R. Tkach, S. Chandrasekhar: Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit, Nat. Photonics 7, 560–568 (2013)CrossRef X. Liu, A. Chraplyvy, P. Winzer, R. Tkach, S. Chandrasekhar: Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit, Nat. Photonics 7, 560–568 (2013)CrossRef
Zurück zum Zitat H. Eliasson, P. Johannisson, M. Karlsson, P.A. Andrekson: Mitigation of nonlinearities using conjugate data repetition, Opt. Express 23, 2392–2402 (2015)CrossRef H. Eliasson, P. Johannisson, M. Karlsson, P.A. Andrekson: Mitigation of nonlinearities using conjugate data repetition, Opt. Express 23, 2392–2402 (2015)CrossRef
Zurück zum Zitat E. Agrell, M. Karlsson, A.R. Chraplyvy, D.J. Richardson, P.M. Krummrich, P. Winzer, K. Roberts, J.K. Fischer, S.J. Savory, B.J. Eggleton, M. Secondini, F.R. Kschischang, A. Lord, J. Prat, I. Tomkos, J.E. Bowers, S. Srinivasan, M. Brandt-Pearce, N. Gisin: Roadmap of optical communications, J. Opt. 18(6), 063002 (2016)CrossRef E. Agrell, M. Karlsson, A.R. Chraplyvy, D.J. Richardson, P.M. Krummrich, P. Winzer, K. Roberts, J.K. Fischer, S.J. Savory, B.J. Eggleton, M. Secondini, F.R. Kschischang, A. Lord, J. Prat, I. Tomkos, J.E. Bowers, S. Srinivasan, M. Brandt-Pearce, N. Gisin: Roadmap of optical communications, J. Opt. 18(6), 063002 (2016)CrossRef
Zurück zum Zitat R.G. Gallager: Information Theory and Reliable Communication (Wiley, Hoboken 1968)MATH R.G. Gallager: Information Theory and Reliable Communication (Wiley, Hoboken 1968)MATH
Zurück zum Zitat F.D. Neeser, J.L. Massey: Proper complex random processes with applications to information theory, IEEE Trans. Inf. Theory 39(4), 1293–1302 (1993)MathSciNetMATHCrossRef F.D. Neeser, J.L. Massey: Proper complex random processes with applications to information theory, IEEE Trans. Inf. Theory 39(4), 1293–1302 (1993)MathSciNetMATHCrossRef
Zurück zum Zitat G. Kramer, M. Yousefi, F. Kschischang: Upper bound on the capacity of a cascade of nonlinear and noisy channels. In: Proc. IEEE Inf. Theory Workshop, Apr. 2015 (2015) pp. 1–4 G. Kramer, M. Yousefi, F. Kschischang: Upper bound on the capacity of a cascade of nonlinear and noisy channels. In: Proc. IEEE Inf. Theory Workshop, Apr. 2015 (2015) pp. 1–4
Zurück zum Zitat E. Agrell, M. Karlsson: Influence of behavioral models on multiuser channel capacity, J. Lightwave Technol. 33(17), 3507–3515 (2015)CrossRef E. Agrell, M. Karlsson: Influence of behavioral models on multiuser channel capacity, J. Lightwave Technol. 33(17), 3507–3515 (2015)CrossRef
Zurück zum Zitat J. Dauwels, H.-A. Loeliger: Computation of information rates by particle methods, IEEE Trans. Inf. Theory 54, 406–409 (2008)MathSciNetMATHCrossRef J. Dauwels, H.-A. Loeliger: Computation of information rates by particle methods, IEEE Trans. Inf. Theory 54, 406–409 (2008)MathSciNetMATHCrossRef
Zurück zum Zitat A.D. Ellis, J. Zhao, D. Cotter: Approaching the non-linear Shannon limit, J. Lightwave Technol. 28(4), 423–433 (2010)CrossRef A.D. Ellis, J. Zhao, D. Cotter: Approaching the non-linear Shannon limit, J. Lightwave Technol. 28(4), 423–433 (2010)CrossRef
Zurück zum Zitat R.-J. Essiambre, G. Kramer, P.J. Winzer, G.J. Foschini, B. Goebel: Capacity limits of optical fiber networks, J. Lightwave Technol. 28(4), 662–701 (2011)CrossRef R.-J. Essiambre, G. Kramer, P.J. Winzer, G.J. Foschini, B. Goebel: Capacity limits of optical fiber networks, J. Lightwave Technol. 28(4), 662–701 (2011)CrossRef
Zurück zum Zitat G. Bosco, P. Poggiolini, A. Carena, V. Curri, F. Forghieri: Analytical results on channel capacity in uncompensated optical links with coherent detection, Opt. Express 19(26), B438–B449 (2011)CrossRef G. Bosco, P. Poggiolini, A. Carena, V. Curri, F. Forghieri: Analytical results on channel capacity in uncompensated optical links with coherent detection, Opt. Express 19(26), B438–B449 (2011)CrossRef
Zurück zum Zitat M. Secondini, E. Forestieri: Scope and limitations of the nonlinear Shannon limit, J. Lightwave Technol. 35(4), 893–902 (2017)CrossRef M. Secondini, E. Forestieri: Scope and limitations of the nonlinear Shannon limit, J. Lightwave Technol. 35(4), 893–902 (2017)CrossRef
Zurück zum Zitat R. Dar, M. Shtaif, M. Feder: New bounds on the capacity of the nonlinear fiber-optic channel, Opt. Lett. 39(2), 398–401 (2014)CrossRef R. Dar, M. Shtaif, M. Feder: New bounds on the capacity of the nonlinear fiber-optic channel, Opt. Lett. 39(2), 398–401 (2014)CrossRef
Zurück zum Zitat D. Marsella, M. Secondini, E. Agrell, E. Forestieri: A simple strategy for mitigating XPM in nonlinear WDM optical systems. In: Proc. Opt. Fiber Commun. Conf. Exhib. 2015, Paper Th4D.3 (2015) D. Marsella, M. Secondini, E. Agrell, E. Forestieri: A simple strategy for mitigating XPM in nonlinear WDM optical systems. In: Proc. Opt. Fiber Commun. Conf. Exhib. 2015, Paper Th4D.3 (2015)
Zurück zum Zitat E. Agrell: Conditions for a monotonic channel capacity, IEEE Trans. Commun. 63(3), 738–748 (2015)CrossRef E. Agrell: Conditions for a monotonic channel capacity, IEEE Trans. Commun. 63(3), 738–748 (2015)CrossRef
Zurück zum Zitat M. Sorokina, S. Sygletos, S. Turitsyn: Ripple distribution for nonlinear fiber-optic channels, Opt. Express 25(3), 2228–2238 (2017)CrossRef M. Sorokina, S. Sygletos, S. Turitsyn: Ripple distribution for nonlinear fiber-optic channels, Opt. Express 25(3), 2228–2238 (2017)CrossRef
Zurück zum Zitat K.S. Turitsyn, S.A. Derevyanko, I.V. Yurkevich, S.K. Turitsyn: Information capacity of optical fiber channels with zero average dispersion, Phys. Rev. Lett. 91, 203901-1–203901-4 (2003)CrossRef K.S. Turitsyn, S.A. Derevyanko, I.V. Yurkevich, S.K. Turitsyn: Information capacity of optical fiber channels with zero average dispersion, Phys. Rev. Lett. 91, 203901-1–203901-4 (2003)CrossRef
Zurück zum Zitat M.I. Yousefi, F.R. Kschischang: On the per-sample capacity of nondispersive optical fibers, IEEE Trans. Inf. Theory 57(11), 7522–7541 (2011)MathSciNetMATHCrossRef M.I. Yousefi, F.R. Kschischang: On the per-sample capacity of nondispersive optical fibers, IEEE Trans. Inf. Theory 57(11), 7522–7541 (2011)MathSciNetMATHCrossRef
Zurück zum Zitat M.I. Yousefi: The asymptotic capacity of the optical fiber, arXiv:1610.06458 [cs.IT] (2016) M.I. Yousefi: The asymptotic capacity of the optical fiber, arXiv:1610.06458 [cs.IT] (2016)
Metadaten
Titel
Fiber Nonlinearity and Optical System Performance
verfasst von
Alberto Bononi
Ronen Dar
Marco Secondini
Paolo Serena
Pierluigi Poggiolini
Copyright-Jahr
2020
Verlag
Springer International Publishing
DOI
https://doi.org/10.1007/978-3-030-16250-4_9

Neuer Inhalt