Skip to main content

Über dieses Buch

This book is designed to highlight the basic principles of fiber optic imaging and sensing devices. The book provides the readers with a solid foundation in fiber optic imaging and sensing devices. The text begins with an introductory chapter that starts from Maxwell’s equations and ends with the derivation of the basic optical fiber characteristic equations and solutions (i.e. fiber modes). Also covered within are reviews of the most common fiber optic interferometric devices which are the basis for many fiber optic imaging and sensing systems. The author discusses the basics of fiber optic imagers with an emphasis on fiber optic confocal microscope. Including chapters on fiber Bragg grating based sensor and various applications and fiber Sagnac loop based sensors. The book also provides useful forms of device characteristic equations.



Chapter 1. Optical Fibers

Light is an electromagnetic disturbance that propagates through space as a wave. Such electromagnetic (EM) wave is produced by a moving charge.
Jin U. Kang

Chapter 2. Fiber Optic Interferometric Devices

Fiber optic interferometry can be broadly explained as the techniques that utilize the fundamental principles of optical interference to measure physical sample properties or detect changes via sensing systems that are partially or completely realized using fiber optic components. While the field of optical interference dates back to second half of seventeenth century, the advent of fiber optic interferometry technology is rather recent as it stemmed out of advances in the fiber optics in late 1970’s and early 1980’s. Over the last few decades, the technology has found wide range of commercial and industrial applications including strain sensors for structural monitoring, medical imaging, remote sensing and precise measurement applications. The basic fundamentals of various fiber interferometric devices and components will be covered in this chapter.
Utkarsh Sharma, Xing Wei

Chapter 3. Fiber Optic Imagers

In most fiber optic imagers, their main differences from their bulk optic imaging counterparts are that the free-space beam path and bulk optics components are replaced by optical fibers and fiber optic components. These seem to be relatively trivial differences; however, they greatly improve the functionality and practicality of the fiber optic imaging systems compared to bulk systems for a wide range of applications—especially for endoscopic, in situ imaging.
Do-Hyun Kim, Jin U. Kang

Chapter 4. Optical Fiber Gratings for Mechanical and Bio-sensing

In general, optical fiber gratings can be classified as either fiber Bragg gratings (FBGs) or long-period fiber gratings (LPGs) depending on whether the periodic variation in the refractive index is ranged in the submicron or in the hundreds of microns scale [1, 2]
Young-Geun Han

Chapter 5. Sagnac Loop Sensors

Fiber-based Sagnac loop sensors are an important subcategory of fiber sensors which utilize Sagnac interferometry. Sagnac interferometers, as opposed to all other types of common interferometers, have the unique advantage of providing the same physical path for the two counter-propagating lightwaves that create the optical interference, hence eliminating signal fading problems due to path instabilities caused by environmental disturbances.
Li Qian

Chapter 6. Principles of Optical Coherence Tomography

Optical coherence is an optical property describing a degree of correlation between phases of optical waves.
Kang Zhang, Jin U. Kang
Weitere Informationen

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.



Globales Erdungssystem in urbanen Kabelnetzen

Bedingt durch die Altersstruktur vieler Kabelverteilnetze mit der damit verbundenen verminderten Isolationsfestigkeit oder durch fortschreitenden Kabelausbau ist es immer häufiger erforderlich, anstelle der Resonanz-Sternpunktserdung alternative Konzepte für die Sternpunktsbehandlung umzusetzen. Die damit verbundenen Fehlerortungskonzepte bzw. die Erhöhung der Restströme im Erdschlussfall führen jedoch aufgrund der hohen Fehlerströme zu neuen Anforderungen an die Erdungs- und Fehlerstromrückleitungs-Systeme. Lesen Sie hier über die Auswirkung von leitfähigen Strukturen auf die Stromaufteilung sowie die Potentialverhältnisse in urbanen Kabelnetzen bei stromstarken Erdschlüssen. Jetzt gratis downloaden!