Skip to main content
Erschienen in:
Buchtitelbild

2017 | OriginalPaper | Buchkapitel

Fiber Optic Sensors Based on Nano-Films

verfasst von : Minghong Yang, Jiankun Peng, Gaopeng Wang, Jixiang Dai

Erschienen in: Fiber Optic Sensors

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The combination of fiber optics with sensitive nano-films offers great potential for the realization of novel sensing concepts. Miniatured optical fiber sensors with thin films as sensitive elements could enable new fields of optical fiber sensor applications. Thin films work as sensitive elements and transducer to get response and feedback from environments, while optical fibers are employed to work as signal carrier. In this chapter fiber optic sensors based on nano-films are reviewed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Huang, M. LeBlanc, M.M. Ohn, R.M. Measures, Bragg intragrating structural sensing. Appl. Opt. 34(22), 5003–5009 (1995)CrossRef S. Huang, M. LeBlanc, M.M. Ohn, R.M. Measures, Bragg intragrating structural sensing. Appl. Opt. 34(22), 5003–5009 (1995)CrossRef
2.
Zurück zum Zitat H. Naruse, M. Tateda, H. Ohno, A. Shimada, Dependence of the Brillouin gain spectrum on linear strain distribution for optical time-domain reflectometer-type strain sensors. Appl. Opt. 41(34), 7212–7217 (2002)CrossRef H. Naruse, M. Tateda, H. Ohno, A. Shimada, Dependence of the Brillouin gain spectrum on linear strain distribution for optical time-domain reflectometer-type strain sensors. Appl. Opt. 41(34), 7212–7217 (2002)CrossRef
3.
Zurück zum Zitat J. Morita, T. Yoshimura, Analytical characteristics of stimulated Raman scattering in a multimode fiber obtained with an optical time-domain reflectometer. Appl. Opt. 34(27), 6136–6143 (1995)CrossRef J. Morita, T. Yoshimura, Analytical characteristics of stimulated Raman scattering in a multimode fiber obtained with an optical time-domain reflectometer. Appl. Opt. 34(27), 6136–6143 (1995)CrossRef
4.
Zurück zum Zitat R. Chow, N. Tsujimoto, Silicon dioxide and hafnium dioxide evaporation characteristics from a high-frequency sweep e-beam system. Appl. Opt. 35(25), 5095–5101 (1996) R. Chow, N. Tsujimoto, Silicon dioxide and hafnium dioxide evaporation characteristics from a high-frequency sweep e-beam system. Appl. Opt. 35(25), 5095–5101 (1996)
5.
Zurück zum Zitat O.D. Volpyan, P.P. Yakovlev, B.B. Meshkov, YuA Obod, Optical properties of Ta2O5 films obtained by reactive magnetron sputtering. J. Opt. Technol. 70(9), 669–672 (2003)CrossRef O.D. Volpyan, P.P. Yakovlev, B.B. Meshkov, YuA Obod, Optical properties of Ta2O5 films obtained by reactive magnetron sputtering. J. Opt. Technol. 70(9), 669–672 (2003)CrossRef
6.
Zurück zum Zitat P.L.G. Jardim, A.F. Michels, F. Horowitz, Optical monitoring for power law fluids during spin coating. Opt. Express 20(3), 3166–3175 (2012)CrossRef P.L.G. Jardim, A.F. Michels, F. Horowitz, Optical monitoring for power law fluids during spin coating. Opt. Express 20(3), 3166–3175 (2012)CrossRef
7.
Zurück zum Zitat T.J. Chen, Y.C. Chiou, R.T. Lee, Grinding characteristics of diamond film using composite electro-plating in-process sharpening method. Int. J. Mach. Tools Manuf 49(6), 470–477 (2009)CrossRef T.J. Chen, Y.C. Chiou, R.T. Lee, Grinding characteristics of diamond film using composite electro-plating in-process sharpening method. Int. J. Mach. Tools Manuf 49(6), 470–477 (2009)CrossRef
8.
Zurück zum Zitat H. Qiu, S. Gao, P. Chen, Z. Li, X. Liu, C. Z, X. Yuanyuan, S. Jiang, C. Yang, Y. Huo, W. Yue, Evanescent wave absorption sensor based on tapered multimode fiber coated with monolayer graphene film. Opt. Commun. 366, 275–281 (2016)CrossRef H. Qiu, S. Gao, P. Chen, Z. Li, X. Liu, C. Z, X. Yuanyuan, S. Jiang, C. Yang, Y. Huo, W. Yue, Evanescent wave absorption sensor based on tapered multimode fiber coated with monolayer graphene film. Opt. Commun. 366, 275–281 (2016)CrossRef
9.
Zurück zum Zitat Q. Rong, X. Qiao, D. Yanying, H. Sun, D. Feng, R. Wang, H. Manli, Z. Feng, In-fiber quasi-Michelson interferometer for liquid level measurement with a core-cladding-modes fiber end-face mirror. Opt. Lasers Eng. 57, 53–57 (2014)CrossRef Q. Rong, X. Qiao, D. Yanying, H. Sun, D. Feng, R. Wang, H. Manli, Z. Feng, In-fiber quasi-Michelson interferometer for liquid level measurement with a core-cladding-modes fiber end-face mirror. Opt. Lasers Eng. 57, 53–57 (2014)CrossRef
10.
Zurück zum Zitat C. Caucheteur, P. Mégret, T. Ernst, D.N. Nikogosyan, Polarization properties of fibre Bragg gratings inscribed by high-intensity femtosecond 264 nm pulses. Opt. Commun. 271(2), 303–308 (2007)CrossRef C. Caucheteur, P. Mégret, T. Ernst, D.N. Nikogosyan, Polarization properties of fibre Bragg gratings inscribed by high-intensity femtosecond 264 nm pulses. Opt. Commun. 271(2), 303–308 (2007)CrossRef
11.
Zurück zum Zitat P.E. Dyer, R.J. Farley, R. Giedl, Analysis of grating formation with excimer laser irradiated phase masks. Opt. Commun. 115(3–4), 327–334 (1995)CrossRef P.E. Dyer, R.J. Farley, R. Giedl, Analysis of grating formation with excimer laser irradiated phase masks. Opt. Commun. 115(3–4), 327–334 (1995)CrossRef
12.
Zurück zum Zitat D.J. Wales, R.M. Parker, J.C. Gates, M.C. Grossel, P.G.R. Smith, An investigation into relative humidity measurement using an aluminosilicate sol–gel thin film as the active layer in an integrated optical Bragg grating refractometer. Sens. Actuators B: Chem. 188, 857–866 (2013)CrossRef D.J. Wales, R.M. Parker, J.C. Gates, M.C. Grossel, P.G.R. Smith, An investigation into relative humidity measurement using an aluminosilicate sol–gel thin film as the active layer in an integrated optical Bragg grating refractometer. Sens. Actuators B: Chem. 188, 857–866 (2013)CrossRef
13.
Zurück zum Zitat J. Villatoro, J. Zubia, New perspectives in photonic crystal fibre sensors. Opt. Laser Technol. 78(Part A) 67–75 (2016) J. Villatoro, J. Zubia, New perspectives in photonic crystal fibre sensors. Opt. Laser Technol. 78(Part A) 67–75 (2016)
14.
Zurück zum Zitat M. Tian, L. Ping, L. Chen, D. Liu, M. Yang, J. Zhang, Femtosecond laser fabricated in-line micro multicavity fiber FP interferometers sensor. Opt. Commun. 316, 80–851 (2014)CrossRef M. Tian, L. Ping, L. Chen, D. Liu, M. Yang, J. Zhang, Femtosecond laser fabricated in-line micro multicavity fiber FP interferometers sensor. Opt. Commun. 316, 80–851 (2014)CrossRef
15.
Zurück zum Zitat H.J. Kbashi, Fabrication of submicron-diameter and taper fibers using chemical etching. J. Mater. Sci. Technol. 28(4), 308–312 (2012)CrossRef H.J. Kbashi, Fabrication of submicron-diameter and taper fibers using chemical etching. J. Mater. Sci. Technol. 28(4), 308–312 (2012)CrossRef
16.
Zurück zum Zitat Y. Han, Z. Chen, D. Cao, Y. Jianhui, H. Li, X. He, J. Zhang, Y. Luo, L. Huihui, J. Tang, H. Huang, Side-polished fiber as a sensor for the determination of nematic liquid crystal orientation. Sens. Actuators B: Chem. 196, 663–669 (2014)CrossRef Y. Han, Z. Chen, D. Cao, Y. Jianhui, H. Li, X. He, J. Zhang, Y. Luo, L. Huihui, J. Tang, H. Huang, Side-polished fiber as a sensor for the determination of nematic liquid crystal orientation. Sens. Actuators B: Chem. 196, 663–669 (2014)CrossRef
17.
Zurück zum Zitat M. Jedrzejewska-Szczerska, P. Wierzba, A. Abou Chaaya, M. Bechelany, P. Miele, R. Viter, A. Mazikowski, K. Karpienko, M. Wróbel, ALD thin ZnO layer as an active medium in a fiber-optic Fabry–Perot interferometer. Sens. Actuators A 221, 88–94 (2015)CrossRef M. Jedrzejewska-Szczerska, P. Wierzba, A. Abou Chaaya, M. Bechelany, P. Miele, R. Viter, A. Mazikowski, K. Karpienko, M. Wróbel, ALD thin ZnO layer as an active medium in a fiber-optic Fabry–Perot interferometer. Sens. Actuators A 221, 88–94 (2015)CrossRef
18.
Zurück zum Zitat J. Zhou, H. Wang, S. Zhao, N. Zhou, L. Li, W. Huang, D. Wang, C. Zhang, In vivo and in vitro studies of borate based glass micro-fibers for dermal repairing. Mater. Sci. Eng., C 60, 437–445 (2016)CrossRef J. Zhou, H. Wang, S. Zhao, N. Zhou, L. Li, W. Huang, D. Wang, C. Zhang, In vivo and in vitro studies of borate based glass micro-fibers for dermal repairing. Mater. Sci. Eng., C 60, 437–445 (2016)CrossRef
19.
Zurück zum Zitat S. Chen, W. Ma, H. Xiang, Y. Cheng, S. Yang, W. Weng, M. Zhu, Conductive, tough, hydrophilic poly(vinyl alcohol)/graphene hybrid fibers for wearable supercapacitors. J. Power Sources 319, 271–280 (2016)CrossRef S. Chen, W. Ma, H. Xiang, Y. Cheng, S. Yang, W. Weng, M. Zhu, Conductive, tough, hydrophilic poly(vinyl alcohol)/graphene hybrid fibers for wearable supercapacitors. J. Power Sources 319, 271–280 (2016)CrossRef
20.
Zurück zum Zitat M. Tabib-Azar, B. Sutapun, R. Petrick, A. Kazemi, Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions. Sens. Actuators, B 56, 158–163 (1999)CrossRef M. Tabib-Azar, B. Sutapun, R. Petrick, A. Kazemi, Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions. Sens. Actuators, B 56, 158–163 (1999)CrossRef
21.
Zurück zum Zitat M.A. Butler, Micromirror optical-fiber hydrogen sensor. Sens. Actuators, B 22, 155–163 (1994)CrossRef M.A. Butler, Micromirror optical-fiber hydrogen sensor. Sens. Actuators, B 22, 155–163 (1994)CrossRef
22.
Zurück zum Zitat J.Z. Ou, M.H. Yaacob, J.L. Campbell, M. Breedon, K. Kalantar-zadeh, W. Wlodarski, H2 sensing performance of optical fiber coated with nano-platelet WO3 film. Sens. Actuators, B 166–167, 1–6 (2012)CrossRef J.Z. Ou, M.H. Yaacob, J.L. Campbell, M. Breedon, K. Kalantar-zadeh, W. Wlodarski, H2 sensing performance of optical fiber coated with nano-platelet WO3 film. Sens. Actuators, B 166–167, 1–6 (2012)CrossRef
23.
Zurück zum Zitat M. Wang, M.H. Yang, J. Chen, J.X. Dai, M.W. Yang, D.N. Wang, Femtosecond laser fabricated micro Mach-Zehnder interferometer with Pd film as sensing material for hydrogen sensing. Opt. Lett. 37(11), 1940–1942 (2012)CrossRef M. Wang, M.H. Yang, J. Chen, J.X. Dai, M.W. Yang, D.N. Wang, Femtosecond laser fabricated micro Mach-Zehnder interferometer with Pd film as sensing material for hydrogen sensing. Opt. Lett. 37(11), 1940–1942 (2012)CrossRef
24.
Zurück zum Zitat K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, H. Ming, Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity. Opt. Express 16(23), 18599–18604 (2008)CrossRef K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, H. Ming, Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity. Opt. Express 16(23), 18599–18604 (2008)CrossRef
25.
Zurück zum Zitat B. Sutapun, M. Tabib-Azar, A. Kazemi, Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing. Sens. Actuators, B 60, 27–34 (1999)CrossRef B. Sutapun, M. Tabib-Azar, A. Kazemi, Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing. Sens. Actuators, B 60, 27–34 (1999)CrossRef
26.
Zurück zum Zitat J.X. Dai, M.H. Yang, Z. Yang, Z. Li, Y. Wang, G.P. Wang, Y. Zhang, Z. Zhuang, Enhanced sensitivity of fiber Bragg grating hydrogen sensor using filexible substrate. Sens. Actuators, B 196, 604–609 (2014)CrossRef J.X. Dai, M.H. Yang, Z. Yang, Z. Li, Y. Wang, G.P. Wang, Y. Zhang, Z. Zhuang, Enhanced sensitivity of fiber Bragg grating hydrogen sensor using filexible substrate. Sens. Actuators, B 196, 604–609 (2014)CrossRef
27.
Zurück zum Zitat Y. Chen, J.F. Li, Y. Yang, M. Chen, J. Li, H.Y. Luo, Numerical modeling and design of mid-infrared FBG with high reflectivity. Optik 124, 2565–2568 (2013)CrossRef Y. Chen, J.F. Li, Y. Yang, M. Chen, J. Li, H.Y. Luo, Numerical modeling and design of mid-infrared FBG with high reflectivity. Optik 124, 2565–2568 (2013)CrossRef
28.
Zurück zum Zitat M. Buric, T. Chen, M. Maklad, P.R. Swinehart, K.P. Chen, Multiplexable low-temperature fiber Bragg grating hydrogen sensors. IEEE Photon. Technol. Lett. 21(21), 1594–1596 (2009)CrossRef M. Buric, T. Chen, M. Maklad, P.R. Swinehart, K.P. Chen, Multiplexable low-temperature fiber Bragg grating hydrogen sensors. IEEE Photon. Technol. Lett. 21(21), 1594–1596 (2009)CrossRef
29.
Zurück zum Zitat L. Alwis, T. Sun, K.T.V. Grattan, Design and performance evaluation of polyvinyl alcohol/polyimide coated optical fibre grating-based humidity sensors. Rev. Sci. Instrum. 84 (2013) L. Alwis, T. Sun, K.T.V. Grattan, Design and performance evaluation of polyvinyl alcohol/polyimide coated optical fibre grating-based humidity sensors. Rev. Sci. Instrum. 84 (2013)
30.
Zurück zum Zitat X. Dong, T. Li, Y. Liu, Y. Li, C.L. Zhao, C.C. Chan, Polyvinyl alcohol-coated hybrid fiber grating for relative humidity sensing. J. Biomed. Opt. 16, 077001–077004 (2011)CrossRef X. Dong, T. Li, Y. Liu, Y. Li, C.L. Zhao, C.C. Chan, Polyvinyl alcohol-coated hybrid fiber grating for relative humidity sensing. J. Biomed. Opt. 16, 077001–077004 (2011)CrossRef
31.
Zurück zum Zitat A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, R.C. Aiyer, Optical fibre based humidity sensor using Co-polyaniline clad. Sens. Actuators B: Chem. 129, 106–112 (2008)CrossRef A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, R.C. Aiyer, Optical fibre based humidity sensor using Co-polyaniline clad. Sens. Actuators B: Chem. 129, 106–112 (2008)CrossRef
32.
Zurück zum Zitat S. Akita, H. Sasaki, K. Watanabe, A. Seki, A humidity sensor based on a hetero-core optical fiber. Sens. Actuators B: Chem. 147, 385–391 (2010)CrossRef S. Akita, H. Sasaki, K. Watanabe, A. Seki, A humidity sensor based on a hetero-core optical fiber. Sens. Actuators B: Chem. 147, 385–391 (2010)CrossRef
33.
Zurück zum Zitat F. Arregui, Y. Liu, I.R. Matias, R.O. Claus, Optical fiber humidity sensor using a nano Fabry-Perot cavity formed by the ionic self-assembly method. Sens. Actuators B: Chem. 59, 54–59 (1999)CrossRef F. Arregui, Y. Liu, I.R. Matias, R.O. Claus, Optical fiber humidity sensor using a nano Fabry-Perot cavity formed by the ionic self-assembly method. Sens. Actuators B: Chem. 59, 54–59 (1999)CrossRef
34.
Zurück zum Zitat J.J. Steele, Nanostructured thin films for humidity sensing. PhD thesis of Alberta University, Canada (2008) J.J. Steele, Nanostructured thin films for humidity sensing. PhD thesis of Alberta University, Canada (2008)
35.
Zurück zum Zitat P.M. Faia, C.S. Furtado, Effect of composition on electrical response to humidity of TiO2: ZnO sensors investigated by impedance spectroscopy. Sens. Actuators B: Chem. 181, 720–729 (2013)CrossRef P.M. Faia, C.S. Furtado, Effect of composition on electrical response to humidity of TiO2: ZnO sensors investigated by impedance spectroscopy. Sens. Actuators B: Chem. 181, 720–729 (2013)CrossRef
36.
Zurück zum Zitat B.M. Kulwicki, Ceramic sensors and transducers. J. Phys. Chem. Solids 45, 1015–1031 (1984)CrossRef B.M. Kulwicki, Ceramic sensors and transducers. J. Phys. Chem. Solids 45, 1015–1031 (1984)CrossRef
37.
Zurück zum Zitat B. Fubini, V. Bolis, M. Bailes, F.S. Stone, The reactivity of oxides with water vapor. Solid State Ionics 32–33, 258–272 (1989)CrossRef B. Fubini, V. Bolis, M. Bailes, F.S. Stone, The reactivity of oxides with water vapor. Solid State Ionics 32–33, 258–272 (1989)CrossRef
38.
Zurück zum Zitat J.H. Anderson, G.A. Parks, The electrical conductivity of silica gel in the presence of adsorbed water. J. Phys. Chem. 72, 3362–3368 (1968)CrossRef J.H. Anderson, G.A. Parks, The electrical conductivity of silica gel in the presence of adsorbed water. J. Phys. Chem. 72, 3362–3368 (1968)CrossRef
39.
Zurück zum Zitat S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd edn. (Academic Press, London, 1982) S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd edn. (Academic Press, London, 1982)
40.
Zurück zum Zitat W.M. Sears, The effect of oxygen stoichiometry on the humidity sensing characteristics of bismuth iron molybdate. Sens. Actuators B 67, 161–172 (2000)CrossRef W.M. Sears, The effect of oxygen stoichiometry on the humidity sensing characteristics of bismuth iron molybdate. Sens. Actuators B 67, 161–172 (2000)CrossRef
41.
Zurück zum Zitat P.M. Faia, A.R. Ferreira, C.S. Furtado, AC impedance spectroscopy: a new equivalent circuit for titania thick film humidity sensors. Sens. Actuators B 107, 353–359 (2005)CrossRef P.M. Faia, A.R. Ferreira, C.S. Furtado, AC impedance spectroscopy: a new equivalent circuit for titania thick film humidity sensors. Sens. Actuators B 107, 353–359 (2005)CrossRef
42.
Zurück zum Zitat E.V. Astrova a, V.A. Tolmachev, Effective refractive index and composition of oxidized porous silicon films. Mater. Sci. Eng., B 69–70, 142–148 (2000)CrossRef E.V. Astrova a, V.A. Tolmachev, Effective refractive index and composition of oxidized porous silicon films. Mater. Sci. Eng., B 69–70, 142–148 (2000)CrossRef
43.
Zurück zum Zitat C. Pickering, M.I.J. Beale, D.J. Robbins, Optical properties of porous silicon films. Thin Solid Films 125, 157–163 (1985)CrossRef C. Pickering, M.I.J. Beale, D.J. Robbins, Optical properties of porous silicon films. Thin Solid Films 125, 157–163 (1985)CrossRef
44.
Zurück zum Zitat Z.L. Ran, Y.J. Rao, W.J. Liu, X. Liao, K.S. Chiang, Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index. Opt. Express 16, 2252–2263 (2008)CrossRef Z.L. Ran, Y.J. Rao, W.J. Liu, X. Liao, K.S. Chiang, Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index. Opt. Express 16, 2252–2263 (2008)CrossRef
45.
Zurück zum Zitat G.L. Zhang, M.H. Yang, Y.T. Dai, Fabry-Perot fiber tip sensor based on an inner air-cavity for refractive index sensing. Chin. Opt. Lett. S11202(3), 2014 G.L. Zhang, M.H. Yang, Y.T. Dai, Fabry-Perot fiber tip sensor based on an inner air-cavity for refractive index sensing. Chin. Opt. Lett. S11202(3), 2014
46.
Zurück zum Zitat K. Robbie, M.J. Brett, Sculptured thin films and glancing angle deposition: growth mechanics and applications. J. Vac. Sci. Technol. A: Vac. Surf. Films 15, 1460–1465 (1997)CrossRef K. Robbie, M.J. Brett, Sculptured thin films and glancing angle deposition: growth mechanics and applications. J. Vac. Sci. Technol. A: Vac. Surf. Films 15, 1460–1465 (1997)CrossRef
47.
Zurück zum Zitat Z.L. Ran, Y.J. Rao, H.Y. Deng, X. Liao, Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining. Opt. Lett. 32, 3071–3073 (2007)CrossRef Z.L. Ran, Y.J. Rao, H.Y. Deng, X. Liao, Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining. Opt. Lett. 32, 3071–3073 (2007)CrossRef
48.
Zurück zum Zitat T. Wei, Y.K. Han, H.L. Tsai, H. Xiao, Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser. Opt. Lett. 33, 536–538 (2008)CrossRef T. Wei, Y.K. Han, H.L. Tsai, H. Xiao, Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser. Opt. Lett. 33, 536–538 (2008)CrossRef
49.
Zurück zum Zitat M.H. David, V.P. Minkovich, J. Villatoro, High-temperature sensing with tapers made of microstructured optical fiber. Photonics Technol. Lett. 18, 511–513 (2006)CrossRef M.H. David, V.P. Minkovich, J. Villatoro, High-temperature sensing with tapers made of microstructured optical fiber. Photonics Technol. Lett. 18, 511–513 (2006)CrossRef
50.
Zurück zum Zitat J.L. Kou, J. Feng, L. Ye, F. Xu, Y.Q. Lu, Miniaturized fiber taper reflective interferometer for high temperature measurement. Opt. Express 18, 14245–14250 (2010)CrossRef J.L. Kou, J. Feng, L. Ye, F. Xu, Y.Q. Lu, Miniaturized fiber taper reflective interferometer for high temperature measurement. Opt. Express 18, 14245–14250 (2010)CrossRef
51.
Zurück zum Zitat H.Y. Choi, K.S. Park, S.J. Park, U.C. Paek, B.H. Lee, E.S. Choi, Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer. Opt. Lett. 33(21), 2455–2457 (2008)CrossRef H.Y. Choi, K.S. Park, S.J. Park, U.C. Paek, B.H. Lee, E.S. Choi, Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer. Opt. Lett. 33(21), 2455–2457 (2008)CrossRef
52.
Zurück zum Zitat H.Y. Choi, G. Mudhana, K.S. Park, U.C. Paek, B.H. Lee, Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index. Opt. Express 18(1), 141–149 (2010)CrossRef H.Y. Choi, G. Mudhana, K.S. Park, U.C. Paek, B.H. Lee, Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index. Opt. Express 18(1), 141–149 (2010)CrossRef
53.
Zurück zum Zitat X. Lai-Cai, M. Deng, D.-W. Duan et al., High-temperature measurement by using a PCF-based Fabry-Perot interferometer. Opt. Lasers Eng. 50, 1391–1396 (2012)CrossRef X. Lai-Cai, M. Deng, D.-W. Duan et al., High-temperature measurement by using a PCF-based Fabry-Perot interferometer. Opt. Lasers Eng. 50, 1391–1396 (2012)CrossRef
54.
Zurück zum Zitat D.W. Duan, Y.J. Rao, W.P. Wen, J. Yao, D. Wu, L.C. Xu, T. Zhu, In-line all-fibre Fabry-Perot interferometer high temperature sensor formed by large lateral offset splicing. Electron. Lett. 47, 401–402 (2011)CrossRef D.W. Duan, Y.J. Rao, W.P. Wen, J. Yao, D. Wu, L.C. Xu, T. Zhu, In-line all-fibre Fabry-Perot interferometer high temperature sensor formed by large lateral offset splicing. Electron. Lett. 47, 401–402 (2011)CrossRef
55.
Zurück zum Zitat Z.Y. Huang, Y.Z. Zhu, X.P. Chen, A.B. Wang, Intrinsic Fabry-Perot sensor for temperature and strain measurements. Photonics Technol Lett. 17, 2403–2405 (2005)CrossRef Z.Y. Huang, Y.Z. Zhu, X.P. Chen, A.B. Wang, Intrinsic Fabry-Perot sensor for temperature and strain measurements. Photonics Technol Lett. 17, 2403–2405 (2005)CrossRef
56.
Zurück zum Zitat Y.-J. Rao, M. Deng, T. Zhu, H. Li, In-line fabry-perot etalons based on hollow-core photonic bandgap fibers for high-temperature applications. J. Lightw. Technol. 27(19), 4360–4365 (2009)CrossRef Y.-J. Rao, M. Deng, T. Zhu, H. Li, In-line fabry-perot etalons based on hollow-core photonic bandgap fibers for high-temperature applications. J. Lightw. Technol. 27(19), 4360–4365 (2009)CrossRef
57.
Zurück zum Zitat J. Wang, E.M. Lally, B. Dong, J. Gong, A. Wang, Fabrication of a miniaturized thin-film temperature sensor on a sapphire fiber tip. IEEE Sens. J. 11(12), 3406–3408 (2011)CrossRef J. Wang, E.M. Lally, B. Dong, J. Gong, A. Wang, Fabrication of a miniaturized thin-film temperature sensor on a sapphire fiber tip. IEEE Sens. J. 11(12), 3406–3408 (2011)CrossRef
58.
Zurück zum Zitat J. Wang, E.M. Lally, X. Wang, J. Gong, G. Pickrell, A. Wang, ZrO2 thin-film-based sapphire fiber temperature sensor. Appl. Opt. 51(12), 2129–2134 (2012)CrossRef J. Wang, E.M. Lally, X. Wang, J. Gong, G. Pickrell, A. Wang, ZrO2 thin-film-based sapphire fiber temperature sensor. Appl. Opt. 51(12), 2129–2134 (2012)CrossRef
59.
Zurück zum Zitat D. Lee, M. Yang, C. Huang, J. Dai, Optical fiber high-temperature sensor based on dielectric films extrinsic Fabry-Perot cavity. IEEE Photonics Technol. Lett. 26(21), 2107–2110 (2014) D. Lee, M. Yang, C. Huang, J. Dai, Optical fiber high-temperature sensor based on dielectric films extrinsic Fabry-Perot cavity. IEEE Photonics Technol. Lett. 26(21), 2107–2110 (2014)
60.
Zurück zum Zitat G.N. Merberg, J.A. Harrington, Optical and mechanical properties of single-crystal sapphire optical fibers. Appl. Opt. 32(18), 3201–3209 (1993)CrossRef G.N. Merberg, J.A. Harrington, Optical and mechanical properties of single-crystal sapphire optical fibers. Appl. Opt. 32(18), 3201–3209 (1993)CrossRef
61.
Zurück zum Zitat D. Lee, Z. Tian, C. Huang, M. Yang, High temperature sensor based on dielectric multilayer Fabry-Perot interferometry on Sapphire fiber tip, in OFS 2014 23 rd International Conference on Optical Fiber Sensors, International Society for Optics and Photonics, vol. 9157, 9157D6-1 (2014) D. Lee, Z. Tian, C. Huang, M. Yang, High temperature sensor based on dielectric multilayer Fabry-Perot interferometry on Sapphire fiber tip, in OFS 2014 23 rd International Conference on Optical Fiber Sensors, International Society for Optics and Photonics, vol. 9157, 9157D6-1 (2014)
62.
Zurück zum Zitat Y. Zhu, A. Wang, Surface-mount sapphire interferometric temperature sensor. Appl. Opt. 45, 6071–6076 (2006)CrossRef Y. Zhu, A. Wang, Surface-mount sapphire interferometric temperature sensor. Appl. Opt. 45, 6071–6076 (2006)CrossRef
63.
Zurück zum Zitat P.V. Patil, D.M. Bendale, R.K. Puri et al., Refractive index and adhesion of Al2O3 thin films obtained from different processes—a comparative study. Thin Solid Films 288, 120–124 (1996)CrossRef P.V. Patil, D.M. Bendale, R.K. Puri et al., Refractive index and adhesion of Al2O3 thin films obtained from different processes—a comparative study. Thin Solid Films 288, 120–124 (1996)CrossRef
64.
Zurück zum Zitat C.M. Perkins, B.B. Triplett, P.C. McIntyre, K.C. Saraswat, S. Haukka, M. Tuomminen, Electrical and materials properties of ZrO2 gate dielectrics grown by atomic layer chemical vapor deposition. Appl. Phys. Lett. 78, 2357–2359 (2001)CrossRef C.M. Perkins, B.B. Triplett, P.C. McIntyre, K.C. Saraswat, S. Haukka, M. Tuomminen, Electrical and materials properties of ZrO2 gate dielectrics grown by atomic layer chemical vapor deposition. Appl. Phys. Lett. 78, 2357–2359 (2001)CrossRef
Metadaten
Titel
Fiber Optic Sensors Based on Nano-Films
verfasst von
Minghong Yang
Jiankun Peng
Gaopeng Wang
Jixiang Dai
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-42625-9_1

Neuer Inhalt