Skip to main content

2017 | OriginalPaper | Buchkapitel

4. Fibrous Hybrid of Graphene and Sulfur Nanocrystals for High-Performance Lithium–Sulfur Batteries

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene–sulfur (G–S) hybrid materials with sulfur nanocrystals anchored on interconnected fibrous graphene are obtained by a facile one pot strategy using a sulfur/carbon disulfide/alcohol mixed solution. The reduction of graphene oxide and the formation/binding of sulfur nanocrystals were integrated. The G–S hybrids exhibit a highly porous network structure constructed by fibrous graphene, many electrically conducting pathways and easily tunable sulfur content, which can be cut and pressed to pellets to be directly used as lithium–sulfur battery cathodes without using metal current-collector, binder and conductive additive. The porous network and sulfur nanocrystals enable rapid ion transport and short Li+ diffuse distance, the interconnected fibrous graphene provides highly conductive electron transport pathways, and the oxygen-containing (mainly hydroxyl/epoxide) groups show strong binding with polysulfides preventing their dissolution into electrolyte based on first-principles calculations. As a result, the G–S hybrids show a high capacity, an excellent high-rate performance and a long life over 100 cycles. These results demonstrate the great potential of this unique hybrid structure as cathodes for high performance lithium-sulfur batteries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Manthiram A, Fu Y, Su Y-S (2012) Challenges and prospects of lithium-sulfur batteries. Acc Chem Res 46(5):1125–1134CrossRef Manthiram A, Fu Y, Su Y-S (2012) Challenges and prospects of lithium-sulfur batteries. Acc Chem Res 46(5):1125–1134CrossRef
2.
Zurück zum Zitat Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42(7):3018–3032CrossRef Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42(7):3018–3032CrossRef
3.
Zurück zum Zitat Zheng GY, Yang Y, Cha JJ, Hong SS, Cui Y (2011) Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 11(10):4462–4467CrossRef Zheng GY, Yang Y, Cha JJ, Hong SS, Cui Y (2011) Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 11(10):4462–4467CrossRef
4.
Zurück zum Zitat Segal M (2009) Selling graphene by the ton. Nat Nanotech 4(10):611–613CrossRef Segal M (2009) Selling graphene by the ton. Nat Nanotech 4(10):611–613CrossRef
5.
Zurück zum Zitat Yang XW, Zhu JW, Qiu L, Li D (2011) Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv Mater 23(25):2833–2838CrossRef Yang XW, Zhu JW, Qiu L, Li D (2011) Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv Mater 23(25):2833–2838CrossRef
6.
Zurück zum Zitat Li C, Shi GQ (2012) Three-dimensional graphene architectures. Nanoscale 4(18):5549–5563CrossRef Li C, Shi GQ (2012) Three-dimensional graphene architectures. Nanoscale 4(18):5549–5563CrossRef
7.
Zurück zum Zitat Qiu L, Liu JZ, Chang SLY, Wu Y, Li D (2012) Biomimetic superelastic graphene-based cellular monoliths. Nat Commun 3:1241CrossRef Qiu L, Liu JZ, Chang SLY, Wu Y, Li D (2012) Biomimetic superelastic graphene-based cellular monoliths. Nat Commun 3:1241CrossRef
8.
Zurück zum Zitat Choi BG, Yang M, Hong WH, Choi JW, Huh YS (2012) 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6(5):4020–4028CrossRef Choi BG, Yang M, Hong WH, Choi JW, Huh YS (2012) 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6(5):4020–4028CrossRef
9.
Zurück zum Zitat Chen WF, Li SR, Chen CH, Yan LF (2011) Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv Mater 23(47):5679–5683CrossRef Chen WF, Li SR, Chen CH, Yan LF (2011) Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv Mater 23(47):5679–5683CrossRef
10.
Zurück zum Zitat Xu YX, Sheng KX, Li C, Shi GQ (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7):4324–4330CrossRef Xu YX, Sheng KX, Li C, Shi GQ (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7):4324–4330CrossRef
11.
Zurück zum Zitat Mukherjee R, Thomas AV, Krishnamurthy A, Koratkar N (2012) Photothermally reduced graphene as high-power anodes for lithium-ion batteries. ACS Nano 6(9):7867–7878CrossRef Mukherjee R, Thomas AV, Krishnamurthy A, Koratkar N (2012) Photothermally reduced graphene as high-power anodes for lithium-ion batteries. ACS Nano 6(9):7867–7878CrossRef
12.
Zurück zum Zitat Zhao J, Pei S, Ren W, Gao L, Cheng H-M (2010) Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 4(9):5245–5252CrossRef Zhao J, Pei S, Ren W, Gao L, Cheng H-M (2010) Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 4(9):5245–5252CrossRef
13.
Zurück zum Zitat Zhou GM et al (2014) A graphene–pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv Mater 26(4):625–631CrossRef Zhou GM et al (2014) A graphene–pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv Mater 26(4):625–631CrossRef
14.
Zurück zum Zitat Wu ZS et al (2009) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2):493–499CrossRef Wu ZS et al (2009) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2):493–499CrossRef
15.
Zurück zum Zitat Zhou GM et al (2012) Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6(4):3214–3223CrossRef Zhou GM et al (2012) Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6(4):3214–3223CrossRef
16.
Zurück zum Zitat Wu ZS et al (2010) Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater 20(20):3595–3602CrossRef Wu ZS et al (2010) Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater 20(20):3595–3602CrossRef
17.
Zurück zum Zitat Stankovich S et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565CrossRef Stankovich S et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565CrossRef
18.
Zurück zum Zitat Lv W et al (2009) Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano 3(11):3730–3736CrossRef Lv W et al (2009) Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano 3(11):3730–3736CrossRef
19.
Zurück zum Zitat Zhang GX, Sun SH, Yang DQ, Dodelet JP, Sacher E (2008) The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment. Carbon 46(2):196–205CrossRef Zhang GX, Sun SH, Yang DQ, Dodelet JP, Sacher E (2008) The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment. Carbon 46(2):196–205CrossRef
20.
Zurück zum Zitat Zhang L et al (2012) Electronic structure and chemical bonding of a graphene oxide-sulfur nanocomposite for use in superior performance lithium-sulfur cells. Phys Chem Chem Phys 14(39):13670–13675CrossRef Zhang L et al (2012) Electronic structure and chemical bonding of a graphene oxide-sulfur nanocomposite for use in superior performance lithium-sulfur cells. Phys Chem Chem Phys 14(39):13670–13675CrossRef
21.
Zurück zum Zitat Demir-Cakan R et al (2011) Cathode composites for Li-S batteries via the use of oxygenated porous architectures. J Am Chem Soc 133(40):16154–16160CrossRef Demir-Cakan R et al (2011) Cathode composites for Li-S batteries via the use of oxygenated porous architectures. J Am Chem Soc 133(40):16154–16160CrossRef
22.
Zurück zum Zitat Schaufuß AG et al (1998) Incipient oxidation of fractured pyrite surfaces in air. J Electron Spectrosc Relat Phenom 96(1–3):69–82CrossRef Schaufuß AG et al (1998) Incipient oxidation of fractured pyrite surfaces in air. J Electron Spectrosc Relat Phenom 96(1–3):69–82CrossRef
23.
Zurück zum Zitat Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186CrossRef Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186CrossRef
24.
Zurück zum Zitat Kresse G, Furthmuller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50CrossRef Kresse G, Furthmuller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50CrossRef
25.
Zurück zum Zitat Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979CrossRef Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979CrossRef
26.
Zurück zum Zitat Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23(10):5048–5079CrossRef Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23(10):5048–5079CrossRef
27.
Zurück zum Zitat Makov G, Payne MC (1995) Periodic boundary-conditions in ab-initio calculations. Phys Rev B 51(7):4014–4022CrossRef Makov G, Payne MC (1995) Periodic boundary-conditions in ab-initio calculations. Phys Rev B 51(7):4014–4022CrossRef
28.
Zurück zum Zitat Hunsicker S, Jones RO, Gantefor G (1995) Rings and chains in sulfur cluster anions S- to S-9(-)—theory (simulated annealing) and experiment (photoelectron detachment). J Chem Phys 102(15):5917–5936CrossRef Hunsicker S, Jones RO, Gantefor G (1995) Rings and chains in sulfur cluster anions S- to S-9(-)—theory (simulated annealing) and experiment (photoelectron detachment). J Chem Phys 102(15):5917–5936CrossRef
29.
Zurück zum Zitat Henkelman G, Arnaldsson A, Jonsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36(3):354–360CrossRef Henkelman G, Arnaldsson A, Jonsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36(3):354–360CrossRef
30.
Zurück zum Zitat Bagri A et al (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2(7):581–587CrossRef Bagri A et al (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2(7):581–587CrossRef
31.
Zurück zum Zitat Berghof V, Sommerfeld T, Cederbaum LS (1998) Sulfur cluster dianions. J Phys Chem A 102(26):5100–5105CrossRef Berghof V, Sommerfeld T, Cederbaum LS (1998) Sulfur cluster dianions. J Phys Chem A 102(26):5100–5105CrossRef
32.
Zurück zum Zitat Xin S et al (2012) Smaller sulfur molecules promise better lithium-sulfur batteries. J Am Chem Soc 134(45):18510–18513CrossRef Xin S et al (2012) Smaller sulfur molecules promise better lithium-sulfur batteries. J Am Chem Soc 134(45):18510–18513CrossRef
33.
Zurück zum Zitat Xiao LF et al (2012) A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv Mater 24(9):1176–1181CrossRef Xiao LF et al (2012) A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv Mater 24(9):1176–1181CrossRef
34.
Zurück zum Zitat Ji LW et al (2011) Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 133(46):18522–18525CrossRef Ji LW et al (2011) Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 133(46):18522–18525CrossRef
35.
Zurück zum Zitat Zhou GM et al (2012) A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li–S batteries. Energy Environ Sci 5(10):8901–8906CrossRef Zhou GM et al (2012) A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li–S batteries. Energy Environ Sci 5(10):8901–8906CrossRef
Metadaten
Titel
Fibrous Hybrid of Graphene and Sulfur Nanocrystals for High-Performance Lithium–Sulfur Batteries
verfasst von
Guangmin Zhou
Copyright-Jahr
2017
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-3406-0_4