Skip to main content

2011 | OriginalPaper | Buchkapitel

3. Fibrous Scaffolds for Tissue Engineering

verfasst von : Wan-Ju Li, James A. Cooper Jr.

Erschienen in: Biomaterials for Tissue Engineering Applications

Verlag: Springer Vienna

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fibers are a continuous material structure that have an extremely high ratio of length to width, and are particularly suitable for fabrication into biomaterial scaffolds for tissue engineering since fibrous structures can morphologically resemble extracellular matrix components in tissues. In addition, fibers can be collected and processed into complex fibrous networks using conventional textile techniques, such as knitting, weaving, or braiding, to create three-dimensional (3D) structures with improved structural and mechanical properties. Recently, there is a growing interest in using nanofabrication techniques to fabricate nanometer-sized fibers for tissue engineering. Nano-sized fibers exhibit enhanced physical and biological properties that are favorable for effective biomaterial scaffolds, compared to micro-sized fibers. While great progress using fibrous scaffolds to grow various human tissues has been made, it is important for scaffold-based tissue engineering to develop the next generation “smart” scaffolds capable of promoting cell-matrix interactions through a bio-inspired surface, and inducing favorable biological activity via controlled release of incorporated biological molecules.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wesolow A, Snyder RW, Textiles. In: von Recum AF, editor. Handbook of Biomaterials Evaluation: Scientific, Technical, and Clinical Testing of Implant Materials. New York: Macmillan, 1986. p. 79–97. Wesolow A, Snyder RW, Textiles. In: von Recum AF, editor. Handbook of Biomaterials Evaluation: Scientific, Technical, and Clinical Testing of Implant Materials. New York: Macmillan, 1986. p. 79–97.
2.
Zurück zum Zitat Casey DJ, Lewis OG, Absorbable and Nonabsorbable Sutures. In: von Recum AF, editor. Handbook of Biomaterials Evaluation: Scientific, Technical, and Clinical Testing of Implant Materials. New York: Macmillan, 1986. p. 86–94. Casey DJ, Lewis OG, Absorbable and Nonabsorbable Sutures. In: von Recum AF, editor. Handbook of Biomaterials Evaluation: Scientific, Technical, and Clinical Testing of Implant Materials. New York: Macmillan, 1986. p. 86–94.
3.
Zurück zum Zitat Shalaby SW, Fabrics. In: Ratner BD, Hoffman AS, Shoen FJ, Lemons JE, editors. Biomaterials Science: An Introduction to Materials in Medicine. 2nd ed. Boston: Elsevier Academic Press, 2004. p. 118–124. Shalaby SW, Fabrics. In: Ratner BD, Hoffman AS, Shoen FJ, Lemons JE, editors. Biomaterials Science: An Introduction to Materials in Medicine. 2nd ed. Boston: Elsevier Academic Press, 2004. p. 118–124.
4.
Zurück zum Zitat Moroni L, de Wijn JR, van Blitterswijk CA. Integrating novel technologies to fabricate smart scaffolds. J Biomater Sci Polym Ed 2008;19:543–572.CrossRef Moroni L, de Wijn JR, van Blitterswijk CA. Integrating novel technologies to fabricate smart scaffolds. J Biomater Sci Polym Ed 2008;19:543–572.CrossRef
5.
Zurück zum Zitat Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 2002;60:613–621.CrossRef Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 2002;60:613–621.CrossRef
6.
Zurück zum Zitat von der Mark K, Structure, Biosynthesis, and Gene Regulation of Collagens in Cartilage and Bone. In: Seibel MJ, Robins SP, Bilezikian JP, editors. Dynamics of Bone and Cartilage Metabolism. San Diego: Academic Press, 1999. p. 3–29. von der Mark K, Structure, Biosynthesis, and Gene Regulation of Collagens in Cartilage and Bone. In: Seibel MJ, Robins SP, Bilezikian JP, editors. Dynamics of Bone and Cartilage Metabolism. San Diego: Academic Press, 1999. p. 3–29.
7.
Zurück zum Zitat Kuivaniemi H, Tromp G, Chu ML, Prockop DJ. Structure of a full-length cDNA clone for the prepro alpha 2(I) chain of human type I procollagen. Comparison with the chicken gene confirms unusual patterns of gene conservation. Biochem J 1988;252:633–640. Kuivaniemi H, Tromp G, Chu ML, Prockop DJ. Structure of a full-length cDNA clone for the prepro alpha 2(I) chain of human type I procollagen. Comparison with the chicken gene confirms unusual patterns of gene conservation. Biochem J 1988;252:633–640.
8.
Zurück zum Zitat Minary-Jolandan M, Yu MF. Nanoscale characterization of isolated individual type I collagen fibrils: polarization and piezoelectricity. Nanotechnology 2009;20:85706.CrossRef Minary-Jolandan M, Yu MF. Nanoscale characterization of isolated individual type I collagen fibrils: polarization and piezoelectricity. Nanotechnology 2009;20:85706.CrossRef
9.
Zurück zum Zitat An KN, Sun YL, Luo ZP. Flexibility of type I collagen and mechanical property of connective tissue. Biorheology 2004;41:239–246. An KN, Sun YL, Luo ZP. Flexibility of type I collagen and mechanical property of connective tissue. Biorheology 2004;41:239–246.
10.
Zurück zum Zitat Yang L, Fitie CF, van der Werf KO, Bennink ML, Dijkstra PJ, Feijen J. Mechanical properties of single electrospun collagen type I fibers. Biomaterials 2008;29:955–962.CrossRef Yang L, Fitie CF, van der Werf KO, Bennink ML, Dijkstra PJ, Feijen J. Mechanical properties of single electrospun collagen type I fibers. Biomaterials 2008;29:955–962.CrossRef
11.
Zurück zum Zitat Ide A, Sakane M, Chen G, Shimojo H, Ushida T, et al. Collagen hybridization with poly l-lactic acid braid promotes ligament cell migration. Mater Sci Eng C 2001;17:95–99.CrossRef Ide A, Sakane M, Chen G, Shimojo H, Ushida T, et al. Collagen hybridization with poly l-lactic acid braid promotes ligament cell migration. Mater Sci Eng C 2001;17:95–99.CrossRef
12.
Zurück zum Zitat Ko FK, Fabrics. In: Wnek GE, Bowlin GL, editors. Encyclopedia of Biomaterials and Biomedical Engineering. New York: Marcel Dekker, 2004. p. 583–602. Ko FK, Fabrics. In: Wnek GE, Bowlin GL, editors. Encyclopedia of Biomaterials and Biomedical Engineering. New York: Marcel Dekker, 2004. p. 583–602.
13.
Zurück zum Zitat Jacobs PF. Stereolithography and other RP&M technologies: from rapid prototyping to rapid tooling. Dearborn, Mich. New York: Society of Manufacturing Engineers in cooperation with the Rapid Prototyping Association of SME; New York, NY: ASME Press, 1996. Jacobs PF. Stereolithography and other RP&M technologies: from rapid prototyping to rapid tooling. Dearborn, Mich. New York: Society of Manufacturing Engineers in cooperation with the Rapid Prototyping Association of SME; New York, NY: ASME Press, 1996.
14.
Zurück zum Zitat Hatch KL. Textile Science. New York: West Publishing Co., 1993. p. 318–370. Hatch KL. Textile Science. New York: West Publishing Co., 1993. p. 318–370.
15.
Zurück zum Zitat Wollina U, Heide M, Muller-Litz W, Obenauf D, Ash J. Functional textiles in prevention of chronic wounds, wound healing and tissue engineering. Curr Probl Dermatol 2003;31:82–97.CrossRef Wollina U, Heide M, Muller-Litz W, Obenauf D, Ash J. Functional textiles in prevention of chronic wounds, wound healing and tissue engineering. Curr Probl Dermatol 2003;31:82–97.CrossRef
16.
Zurück zum Zitat Tuzlakoglu K, Reis RL. Biodegradable polymeric fiber structures in tissue engineering. Tissue Eng Part B Rev 2009;15:17–27.CrossRef Tuzlakoglu K, Reis RL. Biodegradable polymeric fiber structures in tissue engineering. Tissue Eng Part B Rev 2009;15:17–27.CrossRef
17.
Zurück zum Zitat Ko FK, Pastore CM, Head AA. Atkins and Pearce Handbook of Industrial Braiding. Covington: Atkins and Pearce, Inc., 1989. Ko FK, Pastore CM, Head AA. Atkins and Pearce Handbook of Industrial Braiding. Covington: Atkins and Pearce, Inc., 1989.
18.
Zurück zum Zitat Ko FK. Braiding. In: Engineered Materials Handbook, Volume 1, Composites. Metals Park, OH: ASM International, 1987. p. 519–528 Ko FK. Braiding. In: Engineered Materials Handbook, Volume 1, Composites. Metals Park, OH: ASM International, 1987. p. 519–528
19.
Zurück zum Zitat Ko FK. Preform fiber architecture for ceramic-matrix composites. Ceram Bull 1989;68:401–414. Ko FK. Preform fiber architecture for ceramic-matrix composites. Ceram Bull 1989;68:401–414.
20.
Zurück zum Zitat Ko FK, Soebroto HB, Lei C. 3-D Net Shaped Composites by the 2-Step Braiding Process. The 33rd International SAMPE Symposium; 1988 3/7/1988: SAMPE; 1988. p. 912–921. Ko FK, Soebroto HB, Lei C. 3-D Net Shaped Composites by the 2-Step Braiding Process. The 33rd International SAMPE Symposium; 1988 3/7/1988: SAMPE; 1988. p. 912–921.
21.
Zurück zum Zitat Ko FK, Pastore CM, Structure and Properties of an Integrated 3-D Fabric for Structural Composites. In: Vinson J, Taya M, editors. Recent Advances in Composites in the U.S. and Japan. Philadelphia, PA: American Society for Testing and Materials, 1985. Ko FK, Pastore CM, Structure and Properties of an Integrated 3-D Fabric for Structural Composites. In: Vinson J, Taya M, editors. Recent Advances in Composites in the U.S. and Japan. Philadelphia, PA: American Society for Testing and Materials, 1985.
22.
Zurück zum Zitat Duval N, Chaput C, A Classification of Prosthetic Ligament Failures. In: Yahia LH, editor. Ligaments and Ligamentoplasties. Berlin: Springer, 1997. p. 167–191.CrossRef Duval N, Chaput C, A Classification of Prosthetic Ligament Failures. In: Yahia LH, editor. Ligaments and Ligamentoplasties. Berlin: Springer, 1997. p. 167–191.CrossRef
23.
Zurück zum Zitat Lu HH, Cooper JA, Jr., Manuel S, Freeman JW, Attawia MA, Ko FK, et al. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials 2005;26:4805–4816.CrossRef Lu HH, Cooper JA, Jr., Manuel S, Freeman JW, Attawia MA, Ko FK, et al. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials 2005;26:4805–4816.CrossRef
24.
Zurück zum Zitat Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 2005;26:1523–1532.CrossRef Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 2005;26:1523–1532.CrossRef
25.
Zurück zum Zitat Guidoin MF, Marois Y, Bejui J, Poddevin N, King MW, Guidoin R. Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials 2000;21:2461–2474.CrossRef Guidoin MF, Marois Y, Bejui J, Poddevin N, King MW, Guidoin R. Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials 2000;21:2461–2474.CrossRef
26.
Zurück zum Zitat King MW, Soares MB, Guidoin R, The Chemical, Physical and Structural Properties of Synthetic Biomaterials used in Hernia Repair. In: Bendavid R, editor. Prostheses and Abdominal Wall Hernias. Austin: Landes, 1994. p. 191–206. King MW, Soares MB, Guidoin R, The Chemical, Physical and Structural Properties of Synthetic Biomaterials used in Hernia Repair. In: Bendavid R, editor. Prostheses and Abdominal Wall Hernias. Austin: Landes, 1994. p. 191–206.
27.
Zurück zum Zitat Klinge U, Klosterhalfen B, Muller M, Anurov M, Ottinger A, Schumpelick V. Influence of polyglactin-coating on functional and morphological parameters of polypropylene-mesh modifications for abdominal wall repair. Biomaterials 1999;20:613–623.CrossRef Klinge U, Klosterhalfen B, Muller M, Anurov M, Ottinger A, Schumpelick V. Influence of polyglactin-coating on functional and morphological parameters of polypropylene-mesh modifications for abdominal wall repair. Biomaterials 1999;20:613–623.CrossRef
28.
Zurück zum Zitat Marois Y, Cadi R, Gourdon J, Fatouraee N, King MW, Zhang Z, et al. Biostability, inflammatory response, and healing characteristics of a fluoropassivated polyester-knit mesh in the repair of experimental abdominal hernias. Artif Organs 2000;24:533–543.CrossRef Marois Y, Cadi R, Gourdon J, Fatouraee N, King MW, Zhang Z, et al. Biostability, inflammatory response, and healing characteristics of a fluoropassivated polyester-knit mesh in the repair of experimental abdominal hernias. Artif Organs 2000;24:533–543.CrossRef
29.
Zurück zum Zitat Voorhees AB, Jr., Jaretzki A, 3rd, Blakemore AH. The use of tubes constructed from vinyon “N” cloth in bridging arterial defects. Ann Surg 1952;135:332–336.CrossRef Voorhees AB, Jr., Jaretzki A, 3rd, Blakemore AH. The use of tubes constructed from vinyon “N” cloth in bridging arterial defects. Ann Surg 1952;135:332–336.CrossRef
30.
Zurück zum Zitat Szilagyi DE, Elliott JP, Jr., Smith RF, Reddy DJ, McPharlin M. A thirty-year survey of the reconstructive surgical treatment of aortoiliac occlusive disease. J Vasc Surg 1986;3:421–436. Szilagyi DE, Elliott JP, Jr., Smith RF, Reddy DJ, McPharlin M. A thirty-year survey of the reconstructive surgical treatment of aortoiliac occlusive disease. J Vasc Surg 1986;3:421–436.
31.
Zurück zum Zitat Hoerstrup SP, Zund G, Sodian R, Schnell AM, Grunenfelder J, Turina MI. Tissue engineering of small caliber vascular grafts. Eur J Cardiothorac Surg 2001;20:164–169.CrossRef Hoerstrup SP, Zund G, Sodian R, Schnell AM, Grunenfelder J, Turina MI. Tissue engineering of small caliber vascular grafts. Eur J Cardiothorac Surg 2001;20:164–169.CrossRef
32.
Zurück zum Zitat Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, et al. Functional arteries grown in vitro. Science 1999;284:489–493.CrossRef Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, et al. Functional arteries grown in vitro. Science 1999;284:489–493.CrossRef
33.
Zurück zum Zitat Laurencin CT, Khan Y, Kofron M, El-Amin S, Botchwey E, Yu X, et al. The ABJS Nicolas Andry Award: tissue engineering of bone and ligament: a 15-year perspective. Clin Orthop Relat Res 2006;447:221–236.CrossRef Laurencin CT, Khan Y, Kofron M, El-Amin S, Botchwey E, Yu X, et al. The ABJS Nicolas Andry Award: tissue engineering of bone and ligament: a 15-year perspective. Clin Orthop Relat Res 2006;447:221–236.CrossRef
34.
Zurück zum Zitat Cooper JA, Jr., Bailey LO, Carter JN, Castiglioni CE, Kofron MD, Ko FK, et al. Evaluation of the anterior cruciate ligament, medial collateral ligament, achilles tendon and patellar tendon as cell sources for tissue-engineered ligament. Biomaterials 2006;27:2747–2754.CrossRef Cooper JA, Jr., Bailey LO, Carter JN, Castiglioni CE, Kofron MD, Ko FK, et al. Evaluation of the anterior cruciate ligament, medial collateral ligament, achilles tendon and patellar tendon as cell sources for tissue-engineered ligament. Biomaterials 2006;27:2747–2754.CrossRef
35.
Zurück zum Zitat Cooper JA, Jr., Sahota JS, Gorum WJ, 2nd, Carter J, Doty SB, Laurencin CT. Biomimetic tissue-engineered anterior cruciate ligament replacement. Proc Natl Acad Sci USA 2007;104:3049–3054.CrossRef Cooper JA, Jr., Sahota JS, Gorum WJ, 2nd, Carter J, Doty SB, Laurencin CT. Biomimetic tissue-engineered anterior cruciate ligament replacement. Proc Natl Acad Sci USA 2007;104:3049–3054.CrossRef
36.
Zurück zum Zitat Lu L, Zhu X, Pederson LG, Jabbari E, Currier B, O Driscoll S, et al. Effects of dynamic fluid pressure on chondrocytes cultured in biodegradable poly(glycolic acid) fibrous scaffolds. Tissue Eng 2005;11:1852–1859.CrossRef Lu L, Zhu X, Pederson LG, Jabbari E, Currier B, O Driscoll S, et al. Effects of dynamic fluid pressure on chondrocytes cultured in biodegradable poly(glycolic acid) fibrous scaffolds. Tissue Eng 2005;11:1852–1859.CrossRef
37.
Zurück zum Zitat Freed LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, et al. Biodegradable polymer scaffolds for tissue engineering. Biotechnology (N Y) 1994;12:689–693.CrossRef Freed LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, et al. Biodegradable polymer scaffolds for tissue engineering. Biotechnology (N Y) 1994;12:689–693.CrossRef
38.
Zurück zum Zitat Moutos FT, Freed LE, Guilak F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat Mater 2007;6:162–167.CrossRef Moutos FT, Freed LE, Guilak F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat Mater 2007;6:162–167.CrossRef
39.
Zurück zum Zitat Smith LA, Ma PX. Nano-fibrous scaffolds for tissue engineering. Colloids Surf B Biointerfaces 2004;39:125–131.CrossRef Smith LA, Ma PX. Nano-fibrous scaffolds for tissue engineering. Colloids Surf B Biointerfaces 2004;39:125–131.CrossRef
40.
Zurück zum Zitat Zhang S. Designer self-assembling Peptide nanofiber scaffolds for study of 3-d cell biology and beyond. Adv Cancer Res 2008;99:335–362.CrossRef Zhang S. Designer self-assembling Peptide nanofiber scaffolds for study of 3-d cell biology and beyond. Adv Cancer Res 2008;99:335–362.CrossRef
41.
Zurück zum Zitat Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 2008;29:1989–2006.CrossRef Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 2008;29:1989–2006.CrossRef
42.
Zurück zum Zitat Zhang R, Ma PX. Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures. J Biomed Mater Res 2000;52:430–438.CrossRef Zhang R, Ma PX. Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures. J Biomed Mater Res 2000;52:430–438.CrossRef
43.
Zurück zum Zitat Hu J, Liu X, Ma PX. Induction of osteoblast differentiation phenotype on poly(L-lactic acid) nanofibrous matrix. Biomaterials 2008;29:3815–3821.CrossRef Hu J, Liu X, Ma PX. Induction of osteoblast differentiation phenotype on poly(L-lactic acid) nanofibrous matrix. Biomaterials 2008;29:3815–3821.CrossRef
44.
Zurück zum Zitat Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 2003;21:1171–1178.CrossRef Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 2003;21:1171–1178.CrossRef
45.
Zurück zum Zitat Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001;294:1684–1688.CrossRef Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001;294:1684–1688.CrossRef
46.
Zurück zum Zitat Hosseinkhani H, Hosseinkhani M, Tian F, Kobayashi H, Tabata Y. Osteogenic differentiation of mesenchymal stem cells in self-assembled peptide-amphiphile nanofibers. Biomaterials 2006;27:4079–4086.CrossRef Hosseinkhani H, Hosseinkhani M, Tian F, Kobayashi H, Tabata Y. Osteogenic differentiation of mesenchymal stem cells in self-assembled peptide-amphiphile nanofibers. Biomaterials 2006;27:4079–4086.CrossRef
47.
Zurück zum Zitat Semino CE. Self-assembling peptides: from bio-inspired materials to bone regeneration. J Dent Res 2008;87:606–616.CrossRef Semino CE. Self-assembling peptides: from bio-inspired materials to bone regeneration. J Dent Res 2008;87:606–616.CrossRef
48.
Zurück zum Zitat Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci USA 2002;99:9996–10001.CrossRef Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci USA 2002;99:9996–10001.CrossRef
49.
Zurück zum Zitat Schneider A, Garlick JA, Egles C. Self-assembling peptide nanofiber scaffolds accelerate wound healing. PLoS One 2008;3:e1410.CrossRef Schneider A, Garlick JA, Egles C. Self-assembling peptide nanofiber scaffolds accelerate wound healing. PLoS One 2008;3:e1410.CrossRef
50.
51.
Zurück zum Zitat Formhals A. US Patent No. 1,975,504, 1934. Formhals A. US Patent No. 1,975,504, 1934.
52.
Zurück zum Zitat Li WJ, Tuan RS. Fabrication and application of nanofibrous scaffolds in tissue engineering. Curr Protoc Cell Biol 2009;Chapter 25:Unit 25.2. Li WJ, Tuan RS. Fabrication and application of nanofibrous scaffolds in tissue engineering. Curr Protoc Cell Biol 2009;Chapter 25:Unit 25.2.
53.
Zurück zum Zitat Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electrostat 1995;35:151–160.CrossRef Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electrostat 1995;35:151–160.CrossRef
54.
Zurück zum Zitat Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer 1999;40:4585–4592.CrossRef Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer 1999;40:4585–4592.CrossRef
55.
Zurück zum Zitat Liu HQ, Hsieh YL. Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci B Polym Phys 2002;40:2119–2129.CrossRef Liu HQ, Hsieh YL. Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci B Polym Phys 2002;40:2119–2129.CrossRef
56.
Zurück zum Zitat Deitzel JM, Kleinmeyer J, Harris D, Tan NCB. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001;42:261–272.CrossRef Deitzel JM, Kleinmeyer J, Harris D, Tan NCB. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001;42:261–272.CrossRef
57.
Zurück zum Zitat Demir MM, Yilgor I, Yilgor E, Erman B. Electrospinning of polyurethane fibers. Polymer 2002;43:3303–3309.CrossRef Demir MM, Yilgor I, Yilgor E, Erman B. Electrospinning of polyurethane fibers. Polymer 2002;43:3303–3309.CrossRef
58.
Zurück zum Zitat Lee KH, Kim HY, Khil MS, Ra YM, Lee DR. Characterization of nano-structured pol(ε-caprolactone)nonwoven mats via electrospinning. Polymer 2003;44:1287–1294.CrossRef Lee KH, Kim HY, Khil MS, Ra YM, Lee DR. Characterization of nano-structured pol(ε-caprolactone)nonwoven mats via electrospinning. Polymer 2003;44:1287–1294.CrossRef
59.
Zurück zum Zitat Choi JS, Lee SW, Jeong L, Bae SH, Min BC, Youk JH, et al. Effect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Int J Biol Macromol 2004;34:249–256.CrossRef Choi JS, Lee SW, Jeong L, Bae SH, Min BC, Youk JH, et al. Effect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Int J Biol Macromol 2004;34:249–256.CrossRef
60.
Zurück zum Zitat Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 2002;43:4403–4412.CrossRef Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 2002;43:4403–4412.CrossRef
61.
Zurück zum Zitat Li D, Ouyang G, McCann JT, Xia Y. Collecting electrospun nanofibers with patterned electrodes. Nano Lett 2005;5:913–916.CrossRef Li D, Ouyang G, McCann JT, Xia Y. Collecting electrospun nanofibers with patterned electrodes. Nano Lett 2005;5:913–916.CrossRef
62.
Zurück zum Zitat Theron A, Zussman E, Yarin AL. Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology 2001;12:384–390.CrossRef Theron A, Zussman E, Yarin AL. Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology 2001;12:384–390.CrossRef
63.
Zurück zum Zitat Li WJ, Mauck RL, Cooper JA, Yuan X, Tuan RS. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech 2007;40:1686–1693.CrossRef Li WJ, Mauck RL, Cooper JA, Yuan X, Tuan RS. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech 2007;40:1686–1693.CrossRef
64.
Zurück zum Zitat Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A 2003;67:531–537.CrossRef Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A 2003;67:531–537.CrossRef
65.
Zurück zum Zitat Schindler M, Ahmed I, Kamal J, Nur EKA, Grafe TH, Young CH, et al. A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture. Biomaterials 2005;26:5624–5631.CrossRef Schindler M, Ahmed I, Kamal J, Nur EKA, Grafe TH, Young CH, et al. A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture. Biomaterials 2005;26:5624–5631.CrossRef
66.
Zurück zum Zitat Nur EKA, Ahmed I, Kamal J, Schindler M, Meiners S. Three dimensional nanofibrillar surfaces induce activation of Rac. Biochem Biophys Res Commun 2005;331:428–434.CrossRef Nur EKA, Ahmed I, Kamal J, Schindler M, Meiners S. Three dimensional nanofibrillar surfaces induce activation of Rac. Biochem Biophys Res Commun 2005;331:428–434.CrossRef
67.
Zurück zum Zitat Li WJ, Danielson KG, Alexander PG, Tuan RS. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J Biomed Mater Res A 2003;67:1105–1114.CrossRef Li WJ, Danielson KG, Alexander PG, Tuan RS. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J Biomed Mater Res A 2003;67:1105–1114.CrossRef
68.
Zurück zum Zitat Nur EKA, Ahmed I, Kamal J, Schindler M, Meiners S. Three-dimensional nanofibrillar surfaces promote self-renewal in mouse embryonic stem cells. Stem Cells 2006;24:426–433.CrossRef Nur EKA, Ahmed I, Kamal J, Schindler M, Meiners S. Three-dimensional nanofibrillar surfaces promote self-renewal in mouse embryonic stem cells. Stem Cells 2006;24:426–433.CrossRef
69.
Zurück zum Zitat Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 2005;26:5158–5166.CrossRef Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 2005;26:5158–5166.CrossRef
70.
Zurück zum Zitat Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD, et al. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 2006;27:1452–1461.CrossRef Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD, et al. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 2006;27:1452–1461.CrossRef
71.
Zurück zum Zitat Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater 2005;72:156–165.CrossRef Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater 2005;72:156–165.CrossRef
72.
Zurück zum Zitat Boland ED, Matthews JA, Pawlowski KJ, Simpson DG, Wnek GE, Bowlin GL. Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front Biosci 2004;9:1422–1432.CrossRef Boland ED, Matthews JA, Pawlowski KJ, Simpson DG, Wnek GE, Bowlin GL. Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front Biosci 2004;9:1422–1432.CrossRef
73.
Zurück zum Zitat Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 2004;25:1289–1297.CrossRef Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 2004;25:1289–1297.CrossRef
74.
Zurück zum Zitat McManus MC, Boland ED, Simpson DG, Barnes CP, Bowlin GL. Electrospun fibrinogen: feasibility as a tissue engineering scaffold in a rat cell culture model. J Biomed Mater Res A 2007;81:299–309. McManus MC, Boland ED, Simpson DG, Barnes CP, Bowlin GL. Electrospun fibrinogen: feasibility as a tissue engineering scaffold in a rat cell culture model. J Biomed Mater Res A 2007;81:299–309.
75.
Zurück zum Zitat Noh HK, Lee SW, Kim JM, Oh JE, Kim KH, Chung CP, et al. Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials 2006;27:3934–3944.CrossRef Noh HK, Lee SW, Kim JM, Oh JE, Kim KH, Chung CP, et al. Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials 2006;27:3934–3944.CrossRef
76.
Zurück zum Zitat Subramanian A, Lin HY, Vu D, Larsen G. Synthesis and evaluation of scaffolds prepared from chitosan fibers for potential use in cartilage tissue engineering. Biomed Sci Instrum 2004;40:117–122. Subramanian A, Lin HY, Vu D, Larsen G. Synthesis and evaluation of scaffolds prepared from chitosan fibers for potential use in cartilage tissue engineering. Biomed Sci Instrum 2004;40:117–122.
77.
Zurück zum Zitat Um IC, Fang D, Hsiao BS, Okamoto A, Chu B. Electro-spinning and electro-blowing of hyaluronic acid. Biomacromolecules 2004;5:1428–1436.CrossRef Um IC, Fang D, Hsiao BS, Okamoto A, Chu B. Electro-spinning and electro-blowing of hyaluronic acid. Biomacromolecules 2004;5:1428–1436.CrossRef
78.
Zurück zum Zitat Li WJ, Cooper JA, Jr., Mauck RL, Tuan RS. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater 2006;2:377–385.CrossRef Li WJ, Cooper JA, Jr., Mauck RL, Tuan RS. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater 2006;2:377–385.CrossRef
79.
Zurück zum Zitat Zong X, Li S, Chen E, Garlick B, Kim KS, Fang D, et al. Prevention of postsurgery-induced abdominal adhesions by electrospun bioabsorbable nanofibrous poly(lactide-co-glycolide)-based membranes. Ann Surg 2004;240:910–915.CrossRef Zong X, Li S, Chen E, Garlick B, Kim KS, Fang D, et al. Prevention of postsurgery-induced abdominal adhesions by electrospun bioabsorbable nanofibrous poly(lactide-co-glycolide)-based membranes. Ann Surg 2004;240:910–915.CrossRef
80.
Zurück zum Zitat Duan B, Dong C, Yuan X, Yao K. Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide). J Biomater Sci Polym Ed 2004;15:797–811.CrossRef Duan B, Dong C, Yuan X, Yao K. Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide). J Biomater Sci Polym Ed 2004;15:797–811.CrossRef
81.
Zurück zum Zitat Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Yaremchuk M, et al. Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plast Reconstr Surg 1999;104:1014–1022. Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Yaremchuk M, et al. Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plast Reconstr Surg 1999;104:1014–1022.
82.
Zurück zum Zitat Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005;26:2603–2610.CrossRef Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005;26:2603–2610.CrossRef
83.
Zurück zum Zitat Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143–147.CrossRef Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143–147.CrossRef
84.
Zurück zum Zitat Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003;24:2077–2082.CrossRef Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003;24:2077–2082.CrossRef
85.
Zurück zum Zitat Shin M, Yoshimoto H, Vacanti JP. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng 2004;10:33–41.CrossRef Shin M, Yoshimoto H, Vacanti JP. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng 2004;10:33–41.CrossRef
86.
Zurück zum Zitat Venugopal J, Low S, Choon AT, Sampath Kumar TS, Ramakrishna S. Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. J Mater Sci Mater Med 2008;19:2039–2046.CrossRef Venugopal J, Low S, Choon AT, Sampath Kumar TS, Ramakrishna S. Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. J Mater Sci Mater Med 2008;19:2039–2046.CrossRef
87.
Zurück zum Zitat Ko EK, Jeong SI, Rim NG, Lee YM, Shin H, Lee BK. In vitro osteogenic differentiation of human mesenchymal stem cells and in vivo bone formation in composite nanofiber meshes. Tissue Eng A 2008;14:2105–2119.CrossRef Ko EK, Jeong SI, Rim NG, Lee YM, Shin H, Lee BK. In vitro osteogenic differentiation of human mesenchymal stem cells and in vivo bone formation in composite nanofiber meshes. Tissue Eng A 2008;14:2105–2119.CrossRef
88.
Zurück zum Zitat Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 2005;26:599–609.CrossRef Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 2005;26:599–609.CrossRef
89.
Zurück zum Zitat Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ. The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 2008;29:2899–2906.CrossRef Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ. The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 2008;29:2899–2906.CrossRef
90.
Zurück zum Zitat Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, et al. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 2005;26:1261–1270.CrossRef Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, et al. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 2005;26:1261–1270.CrossRef
91.
Zurück zum Zitat Kim TG, Park TG. Biomimicking extracellular matrix: cell adhesive RGD peptide modified electrospun poly(D,L-lactic-co-glycolic acid) nanofiber mesh. Tissue Eng 2006;12:221–233.CrossRef Kim TG, Park TG. Biomimicking extracellular matrix: cell adhesive RGD peptide modified electrospun poly(D,L-lactic-co-glycolic acid) nanofiber mesh. Tissue Eng 2006;12:221–233.CrossRef
92.
Zurück zum Zitat Qi H, Hu P, Xu J, Wang A. Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment. Biomacromolecules 2006;7:2327–2330.CrossRef Qi H, Hu P, Xu J, Wang A. Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment. Biomacromolecules 2006;7:2327–2330.CrossRef
93.
Zurück zum Zitat Xie J, Tan RS, Wang CH. Biodegradable microparticles and fiber fabrics for sustained delivery of cisplatin to treat C6 glioma in vitro. J Biomed Mater Res A 2008;85:897–908. Xie J, Tan RS, Wang CH. Biodegradable microparticles and fiber fabrics for sustained delivery of cisplatin to treat C6 glioma in vitro. J Biomed Mater Res A 2008;85:897–908.
Metadaten
Titel
Fibrous Scaffolds for Tissue Engineering
verfasst von
Wan-Ju Li
James A. Cooper Jr.
Copyright-Jahr
2011
Verlag
Springer Vienna
DOI
https://doi.org/10.1007/978-3-7091-0385-2_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.