Skip to main content
Erschienen in: Journal of Nanoparticle Research 4/2015

01.04.2015 | Research Paper

Field emission current from a junction field-effect transistor

verfasst von: Mahta Monshipouri, Yaser Abdi

Erschienen in: Journal of Nanoparticle Research | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fabrication of a titanium dioxide/carbon nanotube (TiO2/CNT)-based transistor is reported. The transistor can be considered as a combination of a field emission transistor and a junction field-effect transistor. Using direct current plasma-enhanced chemical vapor deposition (DC-PECVD) technique, CNTs were grown on a p-typed (100)-oriented silicon substrate. The CNTs were then covered by TiO2 nanoparticles 2–5 nm in size, using an atmospheric pressure CVD technique. In this device, TiO2/CNT junction is responsible for controlling the emission current. High on/off-current ratio and proper gate control are the most important advantages of device. A model based on Fowler–Nordheim equation is utilized for calculation of the emission current and the results are compared with experimental data. The effect of TiO2/CNT hetero-structure is also investigated, and well modeled.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdi Y, Barati F (2013) Variable electron beam diameter achieved by a titanium oxide/carbon nanotube hetero-structure suitable for nanolithography. Nanotechnology 24:055303CrossRef Abdi Y, Barati F (2013) Variable electron beam diameter achieved by a titanium oxide/carbon nanotube hetero-structure suitable for nanolithography. Nanotechnology 24:055303CrossRef
Zurück zum Zitat Abdi Y, Koohshorkhi J, Mohajerzadeh S, Darbari S, Sanaee Z (2007) Embedded vertically grown carbon nanotubes for field emission applications. J Vac Sci Technol, B 25:822CrossRef Abdi Y, Koohshorkhi J, Mohajerzadeh S, Darbari S, Sanaee Z (2007) Embedded vertically grown carbon nanotubes for field emission applications. J Vac Sci Technol, B 25:822CrossRef
Zurück zum Zitat Abdi Y, Khalilian M, Arzi E (2011) Enhancement in photo-induced hydrophilicity of TiO2/CNT nanostructures by applying voltage. J Phys D 44:255405CrossRef Abdi Y, Khalilian M, Arzi E (2011) Enhancement in photo-induced hydrophilicity of TiO2/CNT nanostructures by applying voltage. J Phys D 44:255405CrossRef
Zurück zum Zitat Abdi Y, Otrooshi N, Miri MF (2014) Surface plasmon resonance of Ag nanoparticles in the vicinity of a high impedance surface. Curr Appl Phys 14:1287–1292CrossRef Abdi Y, Otrooshi N, Miri MF (2014) Surface plasmon resonance of Ag nanoparticles in the vicinity of a high impedance surface. Curr Appl Phys 14:1287–1292CrossRef
Zurück zum Zitat Adessi Ch, Devel M (2000) Theoretical study of field emission by single-wall carbon nanotubes. Phys Rev B 72:314 Adessi Ch, Devel M (2000) Theoretical study of field emission by single-wall carbon nanotubes. Phys Rev B 72:314
Zurück zum Zitat Bardeen J, Brattain WH (1948) The transistor a semi-conductor triode. Phys Rev 74:230CrossRef Bardeen J, Brattain WH (1948) The transistor a semi-conductor triode. Phys Rev 74:230CrossRef
Zurück zum Zitat Belsky M, Bocharov GS, Eletskii AV, Sommerer T (2010) Electrical field enhancement in carbon nanotube-based electron field cathodes. Tech Phys 55:289CrossRef Belsky M, Bocharov GS, Eletskii AV, Sommerer T (2010) Electrical field enhancement in carbon nanotube-based electron field cathodes. Tech Phys 55:289CrossRef
Zurück zum Zitat Bocharov GS, Eletskii AV, Sommerer TJ (2011) Optimization of the parameters of a carbon nanotube-based field-emission cathode. Tech Phys 56:540CrossRef Bocharov GS, Eletskii AV, Sommerer TJ (2011) Optimization of the parameters of a carbon nanotube-based field-emission cathode. Tech Phys 56:540CrossRef
Zurück zum Zitat Darbari S, Abdi Y, Haghighi F, Mohajerzadeh S, Haghighi N (2011) Investigating the antifungal activity of TiO2 nanoparticles deposited on branched carbon nanotube arrays. J Phys D 44:245401CrossRef Darbari S, Abdi Y, Haghighi F, Mohajerzadeh S, Haghighi N (2011) Investigating the antifungal activity of TiO2 nanoparticles deposited on branched carbon nanotube arrays. J Phys D 44:245401CrossRef
Zurück zum Zitat Driskill-Smith AAG, Hasko DG, Ahmed H (1997) Nanoscale field emission structures for ultra-low voltage operation at atmospheric pressure. Appl Phys Lett 71:3159–3161CrossRef Driskill-Smith AAG, Hasko DG, Ahmed H (1997) Nanoscale field emission structures for ultra-low voltage operation at atmospheric pressure. Appl Phys Lett 71:3159–3161CrossRef
Zurück zum Zitat Forbes RG, Edgcombe CJ, Valdre U (2003) Some comments on models for field enhancement. Ultramicroscopy 95:57–65CrossRef Forbes RG, Edgcombe CJ, Valdre U (2003) Some comments on models for field enhancement. Ultramicroscopy 95:57–65CrossRef
Zurück zum Zitat Fowler RH, Nordheim L (1928) Electron emission in intense electric fields. Proc R Soc 119:173CrossRef Fowler RH, Nordheim L (1928) Electron emission in intense electric fields. Proc R Soc 119:173CrossRef
Zurück zum Zitat Gao P, Zhang Q (2014) Encapsulate-and-peel: fabricating carbon nanotube CMOS integrated circuits in a flexible ultra-thin plastic film. Nanotechnol 25:065301CrossRef Gao P, Zhang Q (2014) Encapsulate-and-peel: fabricating carbon nanotube CMOS integrated circuits in a flexible ultra-thin plastic film. Nanotechnol 25:065301CrossRef
Zurück zum Zitat Hückstädt C, Schmidt S, Hüfner S, Forster F, Reinert F, Springborg M (2006) Work function studies of rare-gas/noble metal adsorption systems using a Kelvin probe. Phys Rev B 73:075409CrossRef Hückstädt C, Schmidt S, Hüfner S, Forster F, Reinert F, Springborg M (2006) Work function studies of rare-gas/noble metal adsorption systems using a Kelvin probe. Phys Rev B 73:075409CrossRef
Zurück zum Zitat Ishii S, NishuM Kishimoto S, Mizutani T (2013) Fabrication of thin-film transistor integrated circuits on flexible substrate by transfer technique of carbon nanotube network using poly (vinyl alcohol). Jpn J Appl Phys 52:108001CrossRef Ishii S, NishuM Kishimoto S, Mizutani T (2013) Fabrication of thin-film transistor integrated circuits on flexible substrate by transfer technique of carbon nanotube network using poly (vinyl alcohol). Jpn J Appl Phys 52:108001CrossRef
Zurück zum Zitat Kahng D, Atalla MM (1960) Silicon-Silicon dioxide field induced surface devices. In: IRE-AIEE solid-state device research conference (Pittsburgh/IEEE): 960 Kahng D, Atalla MM (1960) Silicon-Silicon dioxide field induced surface devices. In: IRE-AIEE solid-state device research conference (Pittsburgh/IEEE): 960
Zurück zum Zitat Kim YM, Sleiter D, Sanaka K, Reuter D, LischkaK Yamamoto Y, Pawlis A (2014) Optically controlled initialization and read-out of an electron spin bound to a fluorine donor in ZnSe. Curr Appl Phys 14:1234–1239CrossRef Kim YM, Sleiter D, Sanaka K, Reuter D, LischkaK Yamamoto Y, Pawlis A (2014) Optically controlled initialization and read-out of an electron spin bound to a fluorine donor in ZnSe. Curr Appl Phys 14:1234–1239CrossRef
Zurück zum Zitat Koohsorkhi J, Abdi Y, Mohajerzadeh S, Hosseinzadegan H, Komijani K, Soleimani EA (2006) Fabrication of self-defined gated field emission devices on silicon substrates using PECVD-grown carbon nano-tubes. Carbon 44:2797CrossRef Koohsorkhi J, Abdi Y, Mohajerzadeh S, Hosseinzadegan H, Komijani K, Soleimani EA (2006) Fabrication of self-defined gated field emission devices on silicon substrates using PECVD-grown carbon nano-tubes. Carbon 44:2797CrossRef
Zurück zum Zitat Lednev VN, Pershin SM, Obraztsova ED, Kudryashov SI, Bunkin AF (2013) Single-shot and single-spot measurement of laser ablation threshold for carbon nanotubes. J Phys D 46:052002CrossRef Lednev VN, Pershin SM, Obraztsova ED, Kudryashov SI, Bunkin AF (2013) Single-shot and single-spot measurement of laser ablation threshold for carbon nanotubes. J Phys D 46:052002CrossRef
Zurück zum Zitat Lee SW, Campbell EEB (2013) Nanoelectromechanical devices with carbon nanotubes. Curr Appl Phys 13:1844–1859CrossRef Lee SW, Campbell EEB (2013) Nanoelectromechanical devices with carbon nanotubes. Curr Appl Phys 13:1844–1859CrossRef
Zurück zum Zitat Lee J, Lee J, Seo DH, Shin H, Park S, Chung HJ (2014) Step-by-step implementation of an amplifier circuit with a graphene field-effect transistor on a printed-circuit board. Curr Appl Phys 14:1057–1062CrossRef Lee J, Lee J, Seo DH, Shin H, Park S, Chung HJ (2014) Step-by-step implementation of an amplifier circuit with a graphene field-effect transistor on a printed-circuit board. Curr Appl Phys 14:1057–1062CrossRef
Zurück zum Zitat Liang SD, Chen L (2008) Generalized Fowler–Nordheim theory of field emission of carbon nanotubes. Phys Rev Lett 101:027602CrossRef Liang SD, Chen L (2008) Generalized Fowler–Nordheim theory of field emission of carbon nanotubes. Phys Rev Lett 101:027602CrossRef
Zurück zum Zitat Lilienfeld JE (1925) US Patent 1,745,175 Lilienfeld JE (1925) US Patent 1,745,175
Zurück zum Zitat Maruyama R, Nam YW, Han JH, Strano MS (2011) Well-defined single-walled carbon nanotube fibers as quantum wires: ballistic conduction over micrometer-length scales. Curr Appl Phys 11:1414–1418CrossRef Maruyama R, Nam YW, Han JH, Strano MS (2011) Well-defined single-walled carbon nanotube fibers as quantum wires: ballistic conduction over micrometer-length scales. Curr Appl Phys 11:1414–1418CrossRef
Zurück zum Zitat Millikan RA, Lauritsen CC (1928) Relations of field-currents to thermionic-currents. Proc Natl Acad Sci USA 14:45CrossRef Millikan RA, Lauritsen CC (1928) Relations of field-currents to thermionic-currents. Proc Natl Acad Sci USA 14:45CrossRef
Zurück zum Zitat Mittal G, Lahiri I (2014) Recent progress in nanostructured next-generation field emission devices. J Phys D 47:32300CrossRef Mittal G, Lahiri I (2014) Recent progress in nanostructured next-generation field emission devices. J Phys D 47:32300CrossRef
Zurück zum Zitat Nikiforov KA, Antonova LI, Egorov NV, Trofimov VV, Makeev VV, Ogurtsov OF (2012) Non-gated field emission array as low-energy electron source: experiment and simulation. In: Proceedings of RUPAC, Saint Petersburg, Russia, pp 218–220 Nikiforov KA, Antonova LI, Egorov NV, Trofimov VV, Makeev VV, Ogurtsov OF (2012) Non-gated field emission array as low-energy electron source: experiment and simulation. In: Proceedings of RUPAC, Saint Petersburg, Russia, pp 218–220
Zurück zum Zitat Ong PL, Euler WB, Levitsky IA (2010) Carbon nanotube-Si diode as a detector of mid-infrared illumination. Appl Phys Lett 96:033106CrossRef Ong PL, Euler WB, Levitsky IA (2010) Carbon nanotube-Si diode as a detector of mid-infrared illumination. Appl Phys Lett 96:033106CrossRef
Zurück zum Zitat Park YR, Liu N, Lee CJ (2014) Photoluminescence enhancement from hybrid structures of metallic single-walled carbon nanotube/ZnO films. J Phys D 45:315305 Park YR, Liu N, Lee CJ (2014) Photoluminescence enhancement from hybrid structures of metallic single-walled carbon nanotube/ZnO films. J Phys D 45:315305
Zurück zum Zitat Schottky W, kalte Ü (1923) Uber kalte und warme Elektronenentladungen. Z Phys 14:80CrossRef Schottky W, kalte Ü (1923) Uber kalte und warme Elektronenentladungen. Z Phys 14:80CrossRef
Zurück zum Zitat Shockley W, Pearson GL (1948) Modulation of conductance of thin films of semi-conductors by surface charges. Phys Rev 74:232CrossRef Shockley W, Pearson GL (1948) Modulation of conductance of thin films of semi-conductors by surface charges. Phys Rev 74:232CrossRef
Zurück zum Zitat Streetman BG, Banerjee SK (2009) Solid state electronic devices, 6th edn. PHI Learning, New Delhi Streetman BG, Banerjee SK (2009) Solid state electronic devices, 6th edn. PHI Learning, New Delhi
Zurück zum Zitat Sydoruk VA, GoB K, Meyer C, Petrychuk MV, Danilchenko BA, Weber P, Stampfer C, Li J, Vitusevich SA (2014) Low-frequency noise in individual carbon nanotube field-effect transistors with top, side and back gate configurations: effect of gamma irradiation. Nanotechnol 25:035703CrossRef Sydoruk VA, GoB K, Meyer C, Petrychuk MV, Danilchenko BA, Weber P, Stampfer C, Li J, Vitusevich SA (2014) Low-frequency noise in individual carbon nanotube field-effect transistors with top, side and back gate configurations: effect of gamma irradiation. Nanotechnol 25:035703CrossRef
Zurück zum Zitat Taak S, Rajabali S, Darbari S, Mohajerzadeh S (2014) High sensitive/wide dynamic range, field emission pressure sensor based on fully embedded CNTs. J Phys D Appl Phys 47:045302CrossRef Taak S, Rajabali S, Darbari S, Mohajerzadeh S (2014) High sensitive/wide dynamic range, field emission pressure sensor based on fully embedded CNTs. J Phys D Appl Phys 47:045302CrossRef
Zurück zum Zitat Thu VV, Tam PD, Dung PT (2013) Rapid and label-free detection of H5N1 virus using carbon nanotube network field effect transistor. Curr Appl Phys 13:1311–1315CrossRef Thu VV, Tam PD, Dung PT (2013) Rapid and label-free detection of H5N1 virus using carbon nanotube network field effect transistor. Curr Appl Phys 13:1311–1315CrossRef
Zurück zum Zitat Xu Z, Bai XD, Wang EG, Wang ZL (2005) Field emission of individual carbon nanotube with in situ tip image and real work function. Appl Phys Lett 87:163106CrossRef Xu Z, Bai XD, Wang EG, Wang ZL (2005) Field emission of individual carbon nanotube with in situ tip image and real work function. Appl Phys Lett 87:163106CrossRef
Zurück zum Zitat Yoon DH, Choi YC (2013) Improved field emission stability and uniformity of printed carbon nanotubes prepared using high energy-milled glass frit. Curr Appl Phys 13:1477–1481CrossRef Yoon DH, Choi YC (2013) Improved field emission stability and uniformity of printed carbon nanotubes prepared using high energy-milled glass frit. Curr Appl Phys 13:1477–1481CrossRef
Zurück zum Zitat Yuchi C, Haitian C, Hui G, Jia L, Bilu L, Chongwu Z (2014) Review of carbon nanotube nanoelectronics and macroelectronics. Semicond Sci Technol 29:073001CrossRef Yuchi C, Haitian C, Hui G, Jia L, Bilu L, Chongwu Z (2014) Review of carbon nanotube nanoelectronics and macroelectronics. Semicond Sci Technol 29:073001CrossRef
Zurück zum Zitat Zolper JC (1998) A review of junction field effect transistors for high-temperature and high-power electronics. Solid-State Electron 42:2153CrossRef Zolper JC (1998) A review of junction field effect transistors for high-temperature and high-power electronics. Solid-State Electron 42:2153CrossRef
Zurück zum Zitat Zou Q, Wang MZ, Li YG, ZouL H, Zhao YC (2009) Field emission from carbon nanotubes in air. Plasma Devices Oper 17:286–292CrossRef Zou Q, Wang MZ, Li YG, ZouL H, Zhao YC (2009) Field emission from carbon nanotubes in air. Plasma Devices Oper 17:286–292CrossRef
Metadaten
Titel
Field emission current from a junction field-effect transistor
verfasst von
Mahta Monshipouri
Yaser Abdi
Publikationsdatum
01.04.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 4/2015
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-015-2974-9

Weitere Artikel der Ausgabe 4/2015

Journal of Nanoparticle Research 4/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.