Skip to main content
Erschienen in: Journal of Scientific Computing 2/2019

03.12.2018

Filtered Hyperbolic Moment Method for the Vlasov Equation

verfasst von: Yana Di, Yuwei Fan, Zhenzhong Kou, Ruo Li, Yanli Wang

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we investigate the effect of the filter for the hyperbolic moment equations (HME) (Cai et al. in Commun Pure Appl Math 67(3):464–518, 2014; Cai et al. in SIAM J Sci Comput 35(6):A2807–A2831, 2013) of the Vlasov–Poisson equations and propose a novel quasi time-consistent filter to suppress the numerical recurrence effect. By taking properties of HME into consideration, the filter preserves a lot of physical properties of HME, including Galilean invariance and conservation of mass, momentum and energy. We present two viewpoints—collisional viewpoint and dissipative viewpoint—to dissect the filter, and show that the filtered hyperbolic moment method can be treated as a solver of the Vlasov equation. Numerical simulations of the linear Landau damping and two stream instability demonstrate the effectiveness of the filter in restraining recurrence arising from particle streaming. Both the analysis and the numerical results indicate that the filtered method can capture the evolution of the Vlasov equation, even when phase mixing and filamentation dominate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adjerid, S., Flaherty, J.E.: A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations. SIAM J. Numer. Anal. 23(4), 778–796 (1986)MathSciNetMATHCrossRef Adjerid, S., Flaherty, J.E.: A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations. SIAM J. Numer. Anal. 23(4), 778–796 (1986)MathSciNetMATHCrossRef
2.
Zurück zum Zitat Armstrong, T.P.: Numerical studies of the nonlinear Vlasov equation. Phys. Fluids 10, 1269–1280 (1967)CrossRef Armstrong, T.P.: Numerical studies of the nonlinear Vlasov equation. Phys. Fluids 10, 1269–1280 (1967)CrossRef
3.
Zurück zum Zitat Armstrong, T.P., Harding, R.C., Knorr, G., Montgomery, D.: Solution of Vlasov’s equation by transform methods. J. Sci. Comput. 9, 29–86 (1970) Armstrong, T.P., Harding, R.C., Knorr, G., Montgomery, D.: Solution of Vlasov’s equation by transform methods. J. Sci. Comput. 9, 29–86 (1970)
4.
Zurück zum Zitat Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)MATHCrossRef Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)MATHCrossRef
5.
Zurück zum Zitat Birdsall, C.K., Langdon, A.B.: Plasma Physics Via Computer Simulation. McGraw-Hill, New York (2004)CrossRef Birdsall, C.K., Langdon, A.B.: Plasma Physics Via Computer Simulation. McGraw-Hill, New York (2004)CrossRef
6.
Zurück zum Zitat Bourdiec, S.L., Vuyst, F.D., Jacquet, L.: Numerical solution of the Vlasov–Poisson system using generalized Hermite functions. Commun. Comput. Phys. 175(8), 528–544 (2006)MathSciNetMATHCrossRef Bourdiec, S.L., Vuyst, F.D., Jacquet, L.: Numerical solution of the Vlasov–Poisson system using generalized Hermite functions. Commun. Comput. Phys. 175(8), 528–544 (2006)MathSciNetMATHCrossRef
7.
Zurück zum Zitat Cai, Z., Fan, Y., Li, R.: Globally hyperbolic regularization of Grad’s moment system. Commun. Pure Appl. Math. 67(3), 464–518 (2014)MathSciNetMATHCrossRef Cai, Z., Fan, Y., Li, R.: Globally hyperbolic regularization of Grad’s moment system. Commun. Pure Appl. Math. 67(3), 464–518 (2014)MathSciNetMATHCrossRef
8.
Zurück zum Zitat Cai, Z., Fan, Y., Li, R.: From discrete velocity model to moment method. Math. Numer. Sin. 38(3), 227–244 (2016)MathSciNetMATH Cai, Z., Fan, Y., Li, R.: From discrete velocity model to moment method. Math. Numer. Sin. 38(3), 227–244 (2016)MathSciNetMATH
9.
Zurück zum Zitat Cai, Z., Fan, Y., Li, R., Lu, T., Wang, Y.: Quantum hydrodynamic model by moment closure of Wigner equation. J. Math. Phys. 53(10), 103503 (2012)MathSciNetMATHCrossRef Cai, Z., Fan, Y., Li, R., Lu, T., Wang, Y.: Quantum hydrodynamic model by moment closure of Wigner equation. J. Math. Phys. 53(10), 103503 (2012)MathSciNetMATHCrossRef
10.
11.
Zurück zum Zitat Cai, Z., Wang, Y.: Suppression of recurrence in the Hermite-spectral method for transport equations. SIAM J. Numer. Anal. 56(5), 3144–3168 (2018)MathSciNetMATHCrossRef Cai, Z., Wang, Y.: Suppression of recurrence in the Hermite-spectral method for transport equations. SIAM J. Numer. Anal. 56(5), 3144–3168 (2018)MathSciNetMATHCrossRef
12.
Zurück zum Zitat Camporeale, E., Delzanno, G.L., Bergen, B.K., Moulton, J.D.: On the velocity space discretization for the Vlasov–Poisson system: comparison between implicit Hermite spectral and particle-in-cell methods. Commun. Comput. Phys. 198, 47–58 (2016)MathSciNetMATHCrossRef Camporeale, E., Delzanno, G.L., Bergen, B.K., Moulton, J.D.: On the velocity space discretization for the Vlasov–Poisson system: comparison between implicit Hermite spectral and particle-in-cell methods. Commun. Comput. Phys. 198, 47–58 (2016)MathSciNetMATHCrossRef
13.
Zurück zum Zitat Canuto, C., Hussaini, M.Y., Quarteroni, A.M., Thomas Jr., A., et al.: Spectral Methods in Fluid Dynamics. Springer, Berlin (2012)MATH Canuto, C., Hussaini, M.Y., Quarteroni, A.M., Thomas Jr., A., et al.: Spectral Methods in Fluid Dynamics. Springer, Berlin (2012)MATH
14.
Zurück zum Zitat Carrillo, J., Gamba, M., Majorana, A., Shu, C.: A WENO-solver for the transients of Boltzmann–Poisson system for semiconductor devices: performance and comparisons with Monte Carlo methods. J. Comput. Phys. 184, 498–525 (2003)MathSciNetMATHCrossRef Carrillo, J., Gamba, M., Majorana, A., Shu, C.: A WENO-solver for the transients of Boltzmann–Poisson system for semiconductor devices: performance and comparisons with Monte Carlo methods. J. Comput. Phys. 184, 498–525 (2003)MathSciNetMATHCrossRef
15.
Zurück zum Zitat Cheng, C.Z., Knorr, G.: The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22, 330–351 (1976)CrossRef Cheng, C.Z., Knorr, G.: The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22, 330–351 (1976)CrossRef
16.
Zurück zum Zitat Cheng, Y., Gamba, M., Morrison, J.: Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems. J. Sci. Comput. 56, 319–349 (2013)MathSciNetMATHCrossRef Cheng, Y., Gamba, M., Morrison, J.: Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems. J. Sci. Comput. 56, 319–349 (2013)MathSciNetMATHCrossRef
17.
Zurück zum Zitat Crouseilles, N., Filbet, F.: Numerical approximation of collisional plasmas by high order methods. J. Comput. Phys. 201(2), 546–572 (2004)MathSciNetMATHCrossRef Crouseilles, N., Filbet, F.: Numerical approximation of collisional plasmas by high order methods. J. Comput. Phys. 201(2), 546–572 (2004)MathSciNetMATHCrossRef
18.
Zurück zum Zitat Di, Y., Fan, Y., Li, R.: 13-moment system with global hyperbolicity for quantum gas. J. Stat. Phy. 167(5), 1280–1302 (2017)MathSciNetMATHCrossRef Di, Y., Fan, Y., Li, R.: 13-moment system with global hyperbolicity for quantum gas. J. Stat. Phy. 167(5), 1280–1302 (2017)MathSciNetMATHCrossRef
19.
Zurück zum Zitat Di, Y., Kou, Z., Li, R.: High order moment closure for Vlasov–Maxwell equations. Front. Math. China 10(5), 1087–1100 (2015)MathSciNetMATHCrossRef Di, Y., Kou, Z., Li, R.: High order moment closure for Vlasov–Maxwell equations. Front. Math. China 10(5), 1087–1100 (2015)MathSciNetMATHCrossRef
20.
Zurück zum Zitat Eliasson, B.: Numerical simulations of the Fourier-transformed Vlasov–Maxwell system in higher dimensions theory and applications. Transp. Theory Stat. Phys. 39(5–7), 387–465 (2010)MathSciNetMATHCrossRef Eliasson, B.: Numerical simulations of the Fourier-transformed Vlasov–Maxwell system in higher dimensions theory and applications. Transp. Theory Stat. Phys. 39(5–7), 387–465 (2010)MathSciNetMATHCrossRef
21.
Zurück zum Zitat Ellasson, B.: Outflow boundary conditions for Fourier transformed one-dimensional Vlasov–Poisson system. J. Sci. Comput. 16, 1–28 (2001)MathSciNetCrossRef Ellasson, B.: Outflow boundary conditions for Fourier transformed one-dimensional Vlasov–Poisson system. J. Sci. Comput. 16, 1–28 (2001)MathSciNetCrossRef
22.
Zurück zum Zitat Fatemi, E., Odeh, F.: Upwind finite difference solution of Boltzmann equation applied to electron transport in semiconductor devices. J. Comput. Phys. 108(2), 209–217 (1993)MathSciNetMATHCrossRef Fatemi, E., Odeh, F.: Upwind finite difference solution of Boltzmann equation applied to electron transport in semiconductor devices. J. Comput. Phys. 108(2), 209–217 (1993)MathSciNetMATHCrossRef
23.
Zurück zum Zitat Filbet, F.: Convergence of a finite volume scheme for the Vlasov–Poisson system. SIAM J. Numer. Anal. 39(4), 1146–1169 (2001)MathSciNetMATHCrossRef Filbet, F.: Convergence of a finite volume scheme for the Vlasov–Poisson system. SIAM J. Numer. Anal. 39(4), 1146–1169 (2001)MathSciNetMATHCrossRef
24.
25.
Zurück zum Zitat Filbet, F., Sonnendrücker, E., Bertrand, P.: Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172, 166–187 (2001)MathSciNetMATHCrossRef Filbet, F., Sonnendrücker, E., Bertrand, P.: Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172, 166–187 (2001)MathSciNetMATHCrossRef
26.
28.
Zurück zum Zitat Grant, F.C., Feix, M.R.: Fourier-Hermite solutions of the Vlasov equations in the linearized limit. Phy. Fluids 10(4), 696–702 (1967)CrossRef Grant, F.C., Feix, M.R.: Fourier-Hermite solutions of the Vlasov equations in the linearized limit. Phy. Fluids 10(4), 696–702 (1967)CrossRef
29.
Zurück zum Zitat Heath, R.E., Gamba, I.M., Morrison, P.J., Michler, C.: A discontinuous Galerkin method for the Vlasov–Poisson system. J. Comput. Phys. 231(4), 1140–1174 (2012)MathSciNetMATHCrossRef Heath, R.E., Gamba, I.M., Morrison, P.J., Michler, C.: A discontinuous Galerkin method for the Vlasov–Poisson system. J. Comput. Phys. 231(4), 1140–1174 (2012)MathSciNetMATHCrossRef
31.
Zurück zum Zitat Holloway, J.P.: Spectral velocity discretizations for the Vlasov–Maxwell equations. Transp. Theory Stat. 25(1), 1–32 (1996)MathSciNetMATHCrossRef Holloway, J.P.: Spectral velocity discretizations for the Vlasov–Maxwell equations. Transp. Theory Stat. 25(1), 1–32 (1996)MathSciNetMATHCrossRef
32.
Zurück zum Zitat Hou, T., Li, R.: Computing nearly singular solutions using pseudo-spectral methods. J. Comput. Phys. 226(1), 379–397 (2007)MathSciNetMATHCrossRef Hou, T., Li, R.: Computing nearly singular solutions using pseudo-spectral methods. J. Comput. Phys. 226(1), 379–397 (2007)MathSciNetMATHCrossRef
33.
Zurück zum Zitat Joyce, G., Knorr, G., Meier, H.K.: Numerical integration methods of the Vlasov equation. J. Comput. Phys. 8(1), 53–63 (1971)MATHCrossRef Joyce, G., Knorr, G., Meier, H.K.: Numerical integration methods of the Vlasov equation. J. Comput. Phys. 8(1), 53–63 (1971)MATHCrossRef
34.
Zurück zum Zitat Kanevsky, A., Carpenter, K., Hesthaven, J.S.: Idempotent filtering in spectral and spectral element methods. J. Comput. Phys. 220(1), 41–58 (2006)MathSciNetMATHCrossRef Kanevsky, A., Carpenter, K., Hesthaven, J.S.: Idempotent filtering in spectral and spectral element methods. J. Comput. Phys. 220(1), 41–58 (2006)MathSciNetMATHCrossRef
35.
Zurück zum Zitat Klimas, A.J.: A method for overcoming the velocity space filamentation problem in collisionless plasma model solutions. J. Comput. Phys. 68(1), 202–226 (1987)MATHCrossRef Klimas, A.J.: A method for overcoming the velocity space filamentation problem in collisionless plasma model solutions. J. Comput. Phys. 68(1), 202–226 (1987)MATHCrossRef
36.
Zurück zum Zitat Klimas, A.J., Farrell, W.M.: A splitting algorithm for Vlasov simulation with filamentation filtration. J. Comput. Phys. 110(1), 150–163 (1994)MathSciNetMATHCrossRef Klimas, A.J., Farrell, W.M.: A splitting algorithm for Vlasov simulation with filamentation filtration. J. Comput. Phys. 110(1), 150–163 (1994)MathSciNetMATHCrossRef
38.
Zurück zum Zitat Landau, L.: On the vibrations of the electronic plasma. Eur. J. Org. Chem. 2006(2), 498–506 (1946)MATH Landau, L.: On the vibrations of the electronic plasma. Eur. J. Org. Chem. 2006(2), 498–506 (1946)MATH
39.
Zurück zum Zitat McClarren, R.G., Hauck, C.D.: Robust and accurate filtered spherical harmonics expansions for radiative transfer. J. Comput. Phys. 229(16), 5597–5614 (2010)MathSciNetMATHCrossRef McClarren, R.G., Hauck, C.D.: Robust and accurate filtered spherical harmonics expansions for radiative transfer. J. Comput. Phys. 229(16), 5597–5614 (2010)MathSciNetMATHCrossRef
40.
Zurück zum Zitat Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, Second Edition, Volume 37 of Springer tracts in natural philosophy. Springer, New York (1998) Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, Second Edition, Volume 37 of Springer tracts in natural philosophy. Springer, New York (1998)
41.
Zurück zum Zitat Ng, C.S., Bhattacharjee, A., Skiff, F.: Complete spectrum of kinetic eigenmodes for plasma oscillations in a weakly collisional plasma. Phys. Rev. Lett. 92(6), 065002 (2004)CrossRef Ng, C.S., Bhattacharjee, A., Skiff, F.: Complete spectrum of kinetic eigenmodes for plasma oscillations in a weakly collisional plasma. Phys. Rev. Lett. 92(6), 065002 (2004)CrossRef
42.
Zurück zum Zitat Parker, J.T., Dellar, P.J.: Fourier–Hermite spectral representation for the Vlasov–Poisson system in the weakly collisional limit. J. Plasma Phys. 81(02), 305810203 (2015)CrossRef Parker, J.T., Dellar, P.J.: Fourier–Hermite spectral representation for the Vlasov–Poisson system in the weakly collisional limit. J. Plasma Phys. 81(02), 305810203 (2015)CrossRef
43.
Zurück zum Zitat Qiu, J., Shu, C.: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system. J. Comput. Phys. 230(23), 8386–8409 (2011)MathSciNetMATHCrossRef Qiu, J., Shu, C.: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system. J. Comput. Phys. 230(23), 8386–8409 (2011)MathSciNetMATHCrossRef
44.
Zurück zum Zitat Schumer, J.W., Holloway, J.P.: Vlasov simulation using velocity-scaled Hermite representations. J. Comput. Phys. 144(2), 626–661 (1998)MATHCrossRef Schumer, J.W., Holloway, J.P.: Vlasov simulation using velocity-scaled Hermite representations. J. Comput. Phys. 144(2), 626–661 (1998)MATHCrossRef
46.
Zurück zum Zitat Sonnendrücker, E., Roche, J., Betrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of Vlasov equations. J. Comput. Phys 149(2), 201–220 (1998)MathSciNetMATHCrossRef Sonnendrücker, E., Roche, J., Betrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of Vlasov equations. J. Comput. Phys 149(2), 201–220 (1998)MathSciNetMATHCrossRef
47.
Zurück zum Zitat Torrilhon, M.: Two dimensional bulk microflow simulations based on regularized Grad’s 13-moment equations. SIAM J. Multiscale Model. Simul. 5(3), 695–728 (2006)MathSciNetMATHCrossRef Torrilhon, M.: Two dimensional bulk microflow simulations based on regularized Grad’s 13-moment equations. SIAM J. Multiscale Model. Simul. 5(3), 695–728 (2006)MathSciNetMATHCrossRef
48.
Zurück zum Zitat Vlasov, A.A.: On vibration properties of electron gas. J. Exp. Theor. Phys. 8(3), 291 (1938) Vlasov, A.A.: On vibration properties of electron gas. J. Exp. Theor. Phys. 8(3), 291 (1938)
49.
Zurück zum Zitat Zaki, S.I., Gardner, R.T., Boyd, T.J.: A finite element code for the simulation of one-dimensional Vlasov plasmas. I. Theory. J. Comput. Phys. 79, 184–199 (1988)MATHCrossRef Zaki, S.I., Gardner, R.T., Boyd, T.J.: A finite element code for the simulation of one-dimensional Vlasov plasmas. I. Theory. J. Comput. Phys. 79, 184–199 (1988)MATHCrossRef
Metadaten
Titel
Filtered Hyperbolic Moment Method for the Vlasov Equation
verfasst von
Yana Di
Yuwei Fan
Zhenzhong Kou
Ruo Li
Yanli Wang
Publikationsdatum
03.12.2018
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2019
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0882-8

Weitere Artikel der Ausgabe 2/2019

Journal of Scientific Computing 2/2019 Zur Ausgabe