Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

04.07.2019

Fine-grained affect detection in learners’ generated content using machine learning

Zeitschrift:
Education and Information Technologies
Autoren:
Emmanuel Awuni Kolog, Samuel Nii Odoi Devine, Kwame Ansong-Gyimah, Richard Osei Agjei
Wichtige Hinweise

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Learners’ adaptation to academic trajectory is shaped by several influencing factors that ought to be considered while attempting to design an intervention towards improving academic performance. Emotion is one factor that influences students’ academic orientation and performance. Tracking emotions in text by psychologists have long been a subject of concern to researchers. This is due to the challenges associated with determining the level of accuracy and consistency of decisions made from analysing such text by psychologists. Lately, Artificial Intelligence has complemented human efforts in tracking emotions in text. This paper provides an overview of machine learning application for detecting emotions in text through a Support vector machine learning system. In addition, we compared the performance of the system’s classifier to WEKA’s Multinomial Naïve-Bayes and J48 decision tree classifiers. Real time data from using the system in counselling delivery and collected students’ life stories were used for evaluating the performance of the classifiers. The evaluation results show that the Support vector machine, implemented in our system, is superior over WEKA’s Multinomial Naïve-Bayes and J48 decision tree classifiers. Nevertheless, the various classifiers performed beyond the acceptable threshold. The implication for the findings goes to indicate that machine learning algorithms can be implemented to track emotions in text, especially from students generated content.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise