Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2021 | OriginalPaper | Buchkapitel

Finger Vein Presentation Attack Detection Based on Texture Analysis

verfasst von : Nurul Nabihah Ashari, J. H. Teng, T. S. Ong, S. M. A. Kalaiarasi

Erschienen in: Computational Science and Technology

Verlag: Springer Singapore

Abstract

Biometrics is an effective way to identify and authenticate users based on their personal traits. Among all kinds of hand-based biometrics, finger vein appears to be emerging biometrics that has received a great attention due to its rich information available and ease for implementation. With finger vein system becoming more and more popular, there have been various attempts to comprise the system. Recent studies reveal the vulnerabilities of finger vein system to presentation attack where the sensory device accepts a fake printed finger vein image and gives access as if it were a genuine attempt. In this study, a presentation attack detection method based on hybrid feature spaces of finger vein texture analysis is proposed. Histogram of oriented gradient operator is applied on different channels of grayscale and color feature spaces to obtain texture information of the histogram descriptors. The proposed method includes two implementations of feature space analysis, namely CHOG1 and CHOG2. A well-established publicly available dataset is used to analysis and evaluate the proposed implementations. Experimental results suggest that the combination channels of grayscale and color luminance is able to generate better performance through Support Vector Machine classifier with ACER as low as 0.60% and 0.74% for CHOG1 and CHOG2, respectively. The experiments show that the implementation of CHOG1 performs slightly better than single channel max gradients of CHOG2.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Shaheed K, Liu H, Yang G, Qureshi I, Gou J, Yin Y (2018) A systematic review of finger vein recognition techniques. Information 9(9):213. MDPI, Switzerland Shaheed K, Liu H, Yang G, Qureshi I, Gou J, Yin Y (2018) A systematic review of finger vein recognition techniques. Information 9(9):213. MDPI, Switzerland
2.
Zurück zum Zitat Tome P, Vanoni M, Marcel S (2014) On the vulnerability of finger vein recognition to spoofing. In: 2014 international conference of the biometrics special interest group (BIOSIG), Darmstadt, pp 1–10 Tome P, Vanoni M, Marcel S (2014) On the vulnerability of finger vein recognition to spoofing. In: 2014 international conference of the biometrics special interest group (BIOSIG), Darmstadt, pp 1–10
3.
Zurück zum Zitat Costa V, Sousa A, Reis A (2018) Image-based object spoofing detection. Lecture Notes in Computer Science, vol 11255. Springer, Heidelberg, pp 189–201 Costa V, Sousa A, Reis A (2018) Image-based object spoofing detection. Lecture Notes in Computer Science, vol 11255. Springer, Heidelberg, pp 189–201
4.
Zurück zum Zitat Boulkenafet Z, Komulainen J, Hadid A (2015) Face anti-spoofing based on color texture analysis. In: IEEE international conference on image processing (ICIP). Quebec City, Canada, pp. 2636–2640 Boulkenafet Z, Komulainen J, Hadid A (2015) Face anti-spoofing based on color texture analysis. In: IEEE international conference on image processing (ICIP). Quebec City, Canada, pp. 2636–2640
5.
Zurück zum Zitat Lu Z, Jiang X, Kot A. (2017) A novel LBP-based color descriptor for face recognition, In: 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP), New Orleans, LA, pp 1857–1861 Lu Z, Jiang X, Kot A. (2017) A novel LBP-based color descriptor for face recognition, In: 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP), New Orleans, LA, pp 1857–1861
6.
Zurück zum Zitat Wen D, Han H, Jain AK (2015) Face spoof detection with image distortion analysis. IEEE Trans Inf Forensics Secur 10(4):746–761 CrossRef Wen D, Han H, Jain AK (2015) Face spoof detection with image distortion analysis. IEEE Trans Inf Forensics Secur 10(4):746–761 CrossRef
7.
Zurück zum Zitat Qiu X, Kang W, Tian S, Jia W, Huang Z (2018) Finger vein presentation attack detection using total variation decomposition. IEEE Trans Inf Forensics Secur Qiu X, Kang W, Tian S, Jia W, Huang Z (2018) Finger vein presentation attack detection using total variation decomposition. IEEE Trans Inf Forensics Secur
8.
Zurück zum Zitat Maser B, Sollinger D, Uhl A (2019) PRNU-based detection of finger vein presentation attacks. In: 7th international workshop on biometrics and forensics (IWBF), Cancun, Mexico Maser B, Sollinger D, Uhl A (2019) PRNU-based detection of finger vein presentation attacks. In: 7th international workshop on biometrics and forensics (IWBF), Cancun, Mexico
9.
Zurück zum Zitat Singh M, Venkatesh S, Raja KB, Ramachandra R, Busch C (2019) Detecting finger-vein presentation attacks using 3D shape & diffuse reflectance decomposition. In: 15th international conference on signal-image technology & Internet-based systems (SITIS), Sorrento, Italy Singh M, Venkatesh S, Raja KB, Ramachandra R, Busch C (2019) Detecting finger-vein presentation attacks using 3D shape & diffuse reflectance decomposition. In: 15th international conference on signal-image technology & Internet-based systems (SITIS), Sorrento, Italy
10.
Zurück zum Zitat Nguyen DT, Park YH, Shin KY, Kwon SY, Lee HC, Park KR (2013) Fake finger-vein image detection based on fourier and wavelet transforms. Digit Signal Process 23(5):1401–1413 MathSciNetCrossRef Nguyen DT, Park YH, Shin KY, Kwon SY, Lee HC, Park KR (2013) Fake finger-vein image detection based on fourier and wavelet transforms. Digit Signal Process 23(5):1401–1413 MathSciNetCrossRef
11.
Zurück zum Zitat Tome P et al (2015) The 1st competition on counter measures to finger vein spoofing attacks. In: Proceedings of the international conference on biometrics (ICB), May 2015, pp 513–518 (2015) Tome P et al (2015) The 1st competition on counter measures to finger vein spoofing attacks. In: Proceedings of the international conference on biometrics (ICB), May 2015, pp 513–518 (2015)
12.
Zurück zum Zitat Lukac R, Plataniotis KN (2007) Color image processing: methods and applications, Image Processing Series, vol 7. CRC Press, New York Lukac R, Plataniotis KN (2007) Color image processing: methods and applications, Image Processing Series, vol 7. CRC Press, New York
13.
Zurück zum Zitat Li L, Correia PL, Hadid A (2018) Face recognition under spoofing attacks: countermeasures and research directions. IET Biom 7(1):3–14 CrossRef Li L, Correia PL, Hadid A (2018) Face recognition under spoofing attacks: countermeasures and research directions. IET Biom 7(1):3–14 CrossRef
Metadaten
Titel
Finger Vein Presentation Attack Detection Based on Texture Analysis
verfasst von
Nurul Nabihah Ashari
J. H. Teng
T. S. Ong
S. M. A. Kalaiarasi
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-4069-5_35

Premium Partner