Skip to main content
Erschienen in:

18.04.2024

Finite difference method for the Riesz space distributed-order advection–diffusion equation with delay in 2D: convergence and stability

verfasst von: Mahdi Saedshoar Heris, Mohammad Javidi

Erschienen in: The Journal of Supercomputing | Ausgabe 12/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we propose numerical methods for the Riesz space distributed-order advection–diffusion equation with delay in 2D. We utilize the fractional backward differential formula method of second order (FBDF2), and weighted and shifted Grünwald difference (WSGD) operators to approximate the Riesz fractional derivative and develop the finite difference method for the RFADED. It has been shown that the obtained schemes are unconditionally stable and convergent with the accuracy of \(\textrm{O}({h^2} + {k^2} +{\kappa ^2} + {\sigma ^2} + {\rho ^2})\), where h, k and \(\kappa\) are space step for x, y and time step, respectively. Also, numerical examples are constructed to demonstrate the effectiveness of the numerical methods, and the results are found to be in excellent agreement with analytic exact solution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Diethelm K, Freed AD (1999) On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity. In: Proceedings of the Second Conference on Scientific Computing in Chemical Engineering, Springer, Heidelberg, pp 217–224 Diethelm K, Freed AD (1999) On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity. In: Proceedings of the Second Conference on Scientific Computing in Chemical Engineering, Springer, Heidelberg, pp 217–224
2.
Zurück zum Zitat Gaul L, Klein P, Kemple S (1991) Damping description involving fractional operators. Mech Syst SigProcess 5(2):81–88 Gaul L, Klein P, Kemple S (1991) Damping description involving fractional operators. Mech Syst SigProcess 5(2):81–88
3.
Zurück zum Zitat Glockle WG, Nonnenmacher TF (1995) A fractional calculus approach to self-similar protein dynamics. Biophys J 68(1):46–53 Glockle WG, Nonnenmacher TF (1995) A fractional calculus approach to self-similar protein dynamics. Biophys J 68(1):46–53
4.
Zurück zum Zitat Hilfer R (2000) Applications of fractional calculus in physics. World Scientific, Singapore Hilfer R (2000) Applications of fractional calculus in physics. World Scientific, Singapore
5.
Zurück zum Zitat Anastassiou GA (2011) Advances on fractional inequalities. Springer Science & Business Media, Berlin Anastassiou GA (2011) Advances on fractional inequalities. Springer Science & Business Media, Berlin
6.
Zurück zum Zitat Baleanu D, Diethelm K, Scalas E, Trujillo JJ (2010) Fractional calculus: models and numerical methods. World Scientific, Singapore Baleanu D, Diethelm K, Scalas E, Trujillo JJ (2010) Fractional calculus: models and numerical methods. World Scientific, Singapore
7.
Zurück zum Zitat Diethelm K (2010) The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type. Springer, Berlin Diethelm K (2010) The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type. Springer, Berlin
8.
Zurück zum Zitat Kilbas AAA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, vol 204. Elsevier Science Limited, Amsterdam Kilbas AAA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, vol 204. Elsevier Science Limited, Amsterdam
9.
Zurück zum Zitat Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York
10.
Zurück zum Zitat Podlubny I (1999) Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol. 198 of, Mathematics in Science and Engineering Podlubny I (1999) Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol. 198 of, Mathematics in Science and Engineering
11.
Zurück zum Zitat Galeone L, Garrappa R (2006) On multistep methods for differential equations of fractional order. Mediterr J Math 3(3):565–580MathSciNet Galeone L, Garrappa R (2006) On multistep methods for differential equations of fractional order. Mediterr J Math 3(3):565–580MathSciNet
12.
Zurück zum Zitat Garrappa R (2015) Trapezoidal methods for fractional differential equations: theoretical and computational aspects. Math Comput Simul 110:96–112MathSciNet Garrappa R (2015) Trapezoidal methods for fractional differential equations: theoretical and computational aspects. Math Comput Simul 110:96–112MathSciNet
13.
Zurück zum Zitat Lubich C (1986) Discretized fractional calculus. SIAM J Math Anal 17(3):704–719MathSciNet Lubich C (1986) Discretized fractional calculus. SIAM J Math Anal 17(3):704–719MathSciNet
14.
Zurück zum Zitat Morgado ML, Ford NJ, Lima P (2013) Analysis and numerical methods for fractional differential equations with delay. J Comput Appl Math 252:159–168MathSciNet Morgado ML, Ford NJ, Lima P (2013) Analysis and numerical methods for fractional differential equations with delay. J Comput Appl Math 252:159–168MathSciNet
15.
Zurück zum Zitat Diethelm K, Ford NJ, Freed AD (2004) Detailed error analysis for a fractional adams method. Numer Algorithms 36(1):31–52MathSciNet Diethelm K, Ford NJ, Freed AD (2004) Detailed error analysis for a fractional adams method. Numer Algorithms 36(1):31–52MathSciNet
16.
Zurück zum Zitat Wolkenfelt PHM (1979) Linear multistep methods and the construction of quadrature formulae for volterra integral and integro-differential equations. Technical report NW 76/79. Mathematisch Centrum, Amsterdam, Netherlands Wolkenfelt PHM (1979) Linear multistep methods and the construction of quadrature formulae for volterra integral and integro-differential equations. Technical report NW 76/79. Mathematisch Centrum, Amsterdam, Netherlands
17.
Zurück zum Zitat Garrappa R, Moret I, Popolizio M (2015) Solving the time-fractional schrodinger equation by krylov projection methods. J Comput Phys 293:115–134MathSciNet Garrappa R, Moret I, Popolizio M (2015) Solving the time-fractional schrodinger equation by krylov projection methods. J Comput Phys 293:115–134MathSciNet
18.
Zurück zum Zitat Edwards JT, Ford NJ, Simpson AC (2002) The numerical solution of linear multi-term fractional differential equations: systems of equations. J Appl Anal Comput 148(2):401–418MathSciNet Edwards JT, Ford NJ, Simpson AC (2002) The numerical solution of linear multi-term fractional differential equations: systems of equations. J Appl Anal Comput 148(2):401–418MathSciNet
19.
Zurück zum Zitat Asl MS, Javidi M (2017) An improved pc scheme for nonlinear fractional differential equations: error and stability analysis. J Appl Anal Comput 324:101–117MathSciNet Asl MS, Javidi M (2017) An improved pc scheme for nonlinear fractional differential equations: error and stability analysis. J Appl Anal Comput 324:101–117MathSciNet
20.
Zurück zum Zitat Asl MS, Javidi M (2018) Novel algorithms to estimate nonlinear fdes: applied to fractional order nutrient-phytoplankton-zooplankton system. J Appl Anal Comput 339:193–207MathSciNet Asl MS, Javidi M (2018) Novel algorithms to estimate nonlinear fdes: applied to fractional order nutrient-phytoplankton-zooplankton system. J Appl Anal Comput 339:193–207MathSciNet
21.
Zurück zum Zitat Asl MS, Javidi M, Ahmad B (2019) New predictor-corrector approach for nonlinear fractional differential equations: error analysis and stability. J Appl Anal Comput 9(4):1527–1557MathSciNet Asl MS, Javidi M, Ahmad B (2019) New predictor-corrector approach for nonlinear fractional differential equations: error analysis and stability. J Appl Anal Comput 9(4):1527–1557MathSciNet
22.
Zurück zum Zitat Wang Z, Huang X, Shi G (2011) Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comp Math Appl 62(3):1531–1539MathSciNet Wang Z, Huang X, Shi G (2011) Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comp Math Appl 62(3):1531–1539MathSciNet
23.
Zurück zum Zitat Sachin B (2012) Dynamical analysis of fractional order Uçar prototype delayed system. Signal Image Video Process 6:513–519 Sachin B (2012) Dynamical analysis of fractional order Uçar prototype delayed system. Signal Image Video Process 6:513–519
24.
Zurück zum Zitat Sachin B, Daftardar-Gejji V, Baleanu D, Magin R (2011) Fractional Bloch equation with delay. Comput Math Appl 61(5):1355–1365MathSciNet Sachin B, Daftardar-Gejji V, Baleanu D, Magin R (2011) Fractional Bloch equation with delay. Comput Math Appl 61(5):1355–1365MathSciNet
25.
Zurück zum Zitat Si-Ammour A, Djennoune S, Bettayeb M (2009) A sliding mode control for linear fractional systems with input and state delays. Commun Nonlinear Sci Numer Simul 14(5):2310–2318MathSciNet Si-Ammour A, Djennoune S, Bettayeb M (2009) A sliding mode control for linear fractional systems with input and state delays. Commun Nonlinear Sci Numer Simul 14(5):2310–2318MathSciNet
26.
Zurück zum Zitat Heris MS, Javidi M (2017) On fractional backward differential formulas for fractional delay differential equations with periodic and anti-periodic conditions. Appl Numer Math 118:203–220MathSciNet Heris MS, Javidi M (2017) On fractional backward differential formulas for fractional delay differential equations with periodic and anti-periodic conditions. Appl Numer Math 118:203–220MathSciNet
27.
Zurück zum Zitat Heris MS, Javidi M (2017) On fbdf5 method for delay differential equations of fractional order with periodic and anti-periodic conditions. Mediter J Math 14(3):134MathSciNet Heris MS, Javidi M (2017) On fbdf5 method for delay differential equations of fractional order with periodic and anti-periodic conditions. Mediter J Math 14(3):134MathSciNet
28.
Zurück zum Zitat Heris MS, Javidi M (2018) On fractional backward differential formulas methods for fractional differential equations with delay. Int J Appl Comput Math 4(2):72MathSciNet Heris MS, Javidi M (2018) On fractional backward differential formulas methods for fractional differential equations with delay. Int J Appl Comput Math 4(2):72MathSciNet
29.
Zurück zum Zitat Cermak J, Hornıcek J, Kisela T (2016) Stability regions for fractional differential systems with a time delay. Commun Nonlinear Sci Numer Simul 31(1):108–123MathSciNet Cermak J, Hornıcek J, Kisela T (2016) Stability regions for fractional differential systems with a time delay. Commun Nonlinear Sci Numer Simul 31(1):108–123MathSciNet
30.
Zurück zum Zitat Lazarevic MP, Spasic AM (2009) Finite-time stability analysis of fractional order time-delay systems: Gronwalls approach. Math Comp Modell 49(3):475–481MathSciNet Lazarevic MP, Spasic AM (2009) Finite-time stability analysis of fractional order time-delay systems: Gronwalls approach. Math Comp Modell 49(3):475–481MathSciNet
31.
Zurück zum Zitat Bagley R, Torvik P (2000) On the existence of the order domain and the solution of distributed order equations-part i. Int J Appl Math 2(7):865–882MathSciNet Bagley R, Torvik P (2000) On the existence of the order domain and the solution of distributed order equations-part i. Int J Appl Math 2(7):865–882MathSciNet
32.
Zurück zum Zitat Bagley R, Torvik P (2000) On the existence of the order domain and the solution of distributed order equations-part ii. Int J Appl Math 2(8):965–988MathSciNet Bagley R, Torvik P (2000) On the existence of the order domain and the solution of distributed order equations-part ii. Int J Appl Math 2(8):965–988MathSciNet
33.
Zurück zum Zitat Caputo M (2001) Distributed order differential equations modelling dielectric induction and diffusion. Fract Calculus Appl Anal 4(4):421–442MathSciNet Caputo M (2001) Distributed order differential equations modelling dielectric induction and diffusion. Fract Calculus Appl Anal 4(4):421–442MathSciNet
34.
Zurück zum Zitat Caputo M (2003) Diffusion with space memory modelled with distributed order space fractional differential equations. Ann Geophys 46(2):223–234 Caputo M (2003) Diffusion with space memory modelled with distributed order space fractional differential equations. Ann Geophys 46(2):223–234
35.
Zurück zum Zitat Sokolov I, Chechkin A, Klafter J Distributed-order fractional kinetics, arXiv preprint cond-mat/0401146 Sokolov I, Chechkin A, Klafter J Distributed-order fractional kinetics, arXiv preprint cond-mat/0401146
36.
Zurück zum Zitat Umarov S, Gorenflo R (2005) Cauchy and nonlocal multi-point problems for distributed order pseudo-differential equations: part one. J Anal Appl 245(3):449–466 Umarov S, Gorenflo R (2005) Cauchy and nonlocal multi-point problems for distributed order pseudo-differential equations: part one. J Anal Appl 245(3):449–466
37.
Zurück zum Zitat Meerschaert MM, Nane E, Vellaisamy P (2011) Distributed-order fractional diffusions on bounded domains. J Math Anal Appl 379(1):216–228MathSciNet Meerschaert MM, Nane E, Vellaisamy P (2011) Distributed-order fractional diffusions on bounded domains. J Math Anal Appl 379(1):216–228MathSciNet
38.
Zurück zum Zitat Gorenflo R, Luchko Y, Stojanovic M (2013) Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract Calculus Appl Anal 16(2):297–316MathSciNet Gorenflo R, Luchko Y, Stojanovic M (2013) Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract Calculus Appl Anal 16(2):297–316MathSciNet
39.
Zurück zum Zitat Zhao J, Zhang Y, Xu Y (2020) Implicit runge-kutta and spectral galerkin methods for Riesz space fractional/distributed-order diffusion equation. Comput Appl Math 39(2):1–27MathSciNet Zhao J, Zhang Y, Xu Y (2020) Implicit runge-kutta and spectral galerkin methods for Riesz space fractional/distributed-order diffusion equation. Comput Appl Math 39(2):1–27MathSciNet
40.
Zurück zum Zitat Zaky MA, Machado JT (2020) Multi-dimensional spectral tau methods for distributed-order fractional diffusion equations. Comput Math Appl 79(2):476–488MathSciNet Zaky MA, Machado JT (2020) Multi-dimensional spectral tau methods for distributed-order fractional diffusion equations. Comput Math Appl 79(2):476–488MathSciNet
41.
Zurück zum Zitat Zhang Y, Cao J, Bu W, Xiao A (2020) A fast finite difference/finite element method for the two-dimensional distributed-order time-space fractional reaction diffusion equation. Int J Model Simul Sci Comput 11(02):2050016 Zhang Y, Cao J, Bu W, Xiao A (2020) A fast finite difference/finite element method for the two-dimensional distributed-order time-space fractional reaction diffusion equation. Int J Model Simul Sci Comput 11(02):2050016
42.
Zurück zum Zitat Gao X, Liu F, Li H, Liu Y, Turner I, Yin B (2020) A novel finite element method for the distributed-order time fractional cable equation in two dimensions. Comp Math Appl 80(5):923–939MathSciNet Gao X, Liu F, Li H, Liu Y, Turner I, Yin B (2020) A novel finite element method for the distributed-order time fractional cable equation in two dimensions. Comp Math Appl 80(5):923–939MathSciNet
43.
Zurück zum Zitat Li J, Yang Y, Jiang Y, Feng L, Guo B (2021) High-order numerical method for solving a space distributed-order time-fractional diffusion equation. Acta Math Sci 41(3):801–826MathSciNet Li J, Yang Y, Jiang Y, Feng L, Guo B (2021) High-order numerical method for solving a space distributed-order time-fractional diffusion equation. Acta Math Sci 41(3):801–826MathSciNet
44.
Zurück zum Zitat Yang S, Liu F, Feng L, Turner I (2021) A novel finite volume method for the nonlinear two-sided space distributed-order diffusion equation with variable coefficients. J Comput Appl Math 388:113337MathSciNet Yang S, Liu F, Feng L, Turner I (2021) A novel finite volume method for the nonlinear two-sided space distributed-order diffusion equation with variable coefficients. J Comput Appl Math 388:113337MathSciNet
45.
Zurück zum Zitat Javidi M, Heris MS MS, Ahmad B (2019) A predictor-corrector scheme for solving nonlinear fractional differential equations with uniform and nonuniform meshes. Int J Model Simul Sci Comput 10(5):1950033 Javidi M, Heris MS MS, Ahmad B (2019) A predictor-corrector scheme for solving nonlinear fractional differential equations with uniform and nonuniform meshes. Int J Model Simul Sci Comput 10(5):1950033
46.
Zurück zum Zitat Heris MS, Javidi M, Ahmad B (2019) Analytical and numerical solutions of Riesz space fractional advection-dispersion equations with delay. Comp Model Eng Sci 121(1):249–272 Heris MS, Javidi M, Ahmad B (2019) Analytical and numerical solutions of Riesz space fractional advection-dispersion equations with delay. Comp Model Eng Sci 121(1):249–272
47.
Zurück zum Zitat Heris MS, Javidi M (2019) A predictor-corrector scheme for the tempered fractional differential equations with uniform and non-uniform meshes. J Supercomput 75(12):8168–8206 Heris MS, Javidi M (2019) A predictor-corrector scheme for the tempered fractional differential equations with uniform and non-uniform meshes. J Supercomput 75(12):8168–8206
48.
Zurück zum Zitat Javidi M, Heris MS (2019) Analysis and numerical methods for the Riesz space distributed-order advection-diffusion equation with time delay. SeMA J 76:533–551MathSciNet Javidi M, Heris MS (2019) Analysis and numerical methods for the Riesz space distributed-order advection-diffusion equation with time delay. SeMA J 76:533–551MathSciNet
49.
Zurück zum Zitat Lateef Saeed I, Javidi M, Heris MS (2024) Numerical methods for solving a Riesz space partial fractional differential equation: applied to fractional kinetic equations. Int J Appl Comput Math 10(1):1MathSciNet Lateef Saeed I, Javidi M, Heris MS (2024) Numerical methods for solving a Riesz space partial fractional differential equation: applied to fractional kinetic equations. Int J Appl Comput Math 10(1):1MathSciNet
50.
Zurück zum Zitat Zhang H, Jia J, Jiang X (2020) An optimal error estimate for the twodimensional nonlinear time fractional advection-diffusion equation with smooth and non-smooth solutions. Comp Math Appl 79(10):2819–2831 Zhang H, Jia J, Jiang X (2020) An optimal error estimate for the twodimensional nonlinear time fractional advection-diffusion equation with smooth and non-smooth solutions. Comp Math Appl 79(10):2819–2831
51.
Zurück zum Zitat Hao Z, Zhang Z (2020) Optimal regularity and error estimates of a spectral galerkin method for fractional advection-diffusion-reaction equations. SIAM J Numer Anal 58(1):211–233MathSciNet Hao Z, Zhang Z (2020) Optimal regularity and error estimates of a spectral galerkin method for fractional advection-diffusion-reaction equations. SIAM J Numer Anal 58(1):211–233MathSciNet
52.
Zurück zum Zitat Zhang H, Liu F, Jiang X, Zeng F, Turner I (2018) A crank-nicolson adigalerkin-legendre spectral method for the two-dimensional Riesz space distributed-order advection-diffusion equation. Comp Math Appl 76(10):2460–2476 Zhang H, Liu F, Jiang X, Zeng F, Turner I (2018) A crank-nicolson adigalerkin-legendre spectral method for the two-dimensional Riesz space distributed-order advection-diffusion equation. Comp Math Appl 76(10):2460–2476
53.
Zurück zum Zitat Sokolov I, Chechkin A, Klafter J (2004) Distributed-order fractional kinetics, arXiv preprint cond-mat/0401146 Sokolov I, Chechkin A, Klafter J (2004) Distributed-order fractional kinetics, arXiv preprint cond-mat/0401146
54.
Zurück zum Zitat Li J, Liu F, Feng L, Turner I (2017) A novel finite volume method for the Riesz space distributed-order diffusion equation. Comp Math Appl 74(4):772–783MathSciNet Li J, Liu F, Feng L, Turner I (2017) A novel finite volume method for the Riesz space distributed-order diffusion equation. Comp Math Appl 74(4):772–783MathSciNet
55.
Zurück zum Zitat Yang Q, Liu F, Turner I (2010) Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl Math Modell 34(1):200–218MathSciNet Yang Q, Liu F, Turner I (2010) Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl Math Modell 34(1):200–218MathSciNet
56.
Zurück zum Zitat Yousuf M, Furati KM, Khaliq AQM (2020) High-order time-stepping methods for two-dimensional Riesz fractional nonlinear reaction-diffusion equations. Comput Math Appl 80(1):204–226MathSciNet Yousuf M, Furati KM, Khaliq AQM (2020) High-order time-stepping methods for two-dimensional Riesz fractional nonlinear reaction-diffusion equations. Comput Math Appl 80(1):204–226MathSciNet
57.
Zurück zum Zitat Zhang L, Zhang Q, Sun HW (2023) Preconditioned fourth-order exponential integrator for two-dimensional nonlinear fractional Ginzburg-Landau equation. Comput Math Appl 150:211–228MathSciNet Zhang L, Zhang Q, Sun HW (2023) Preconditioned fourth-order exponential integrator for two-dimensional nonlinear fractional Ginzburg-Landau equation. Comput Math Appl 150:211–228MathSciNet
58.
Zurück zum Zitat Zhang Q, Hesthaven JS, Sun Z, Ren Y (2021) Pointwise error estimate in difference setting for the two-dimensional nonlinear fractional complex Ginzburg-Landau equation. Adv Comput Math 47:1–33MathSciNet Zhang Q, Hesthaven JS, Sun Z, Ren Y (2021) Pointwise error estimate in difference setting for the two-dimensional nonlinear fractional complex Ginzburg-Landau equation. Adv Comput Math 47:1–33MathSciNet
59.
Zurück zum Zitat Zhang M, Zhang GF (2021) Fast iterative solvers for the two-dimensional spatial fractional Ginzburg-Landau equations. Appl Math Let 121:107350MathSciNet Zhang M, Zhang GF (2021) Fast iterative solvers for the two-dimensional spatial fractional Ginzburg-Landau equations. Appl Math Let 121:107350MathSciNet
60.
Zurück zum Zitat Meerschaert MM, Tadjeran C (2004) Finite difference approximations for fractional advection-dispersion flow equations. J Comput Appl Math 172(1):65–77MathSciNet Meerschaert MM, Tadjeran C (2004) Finite difference approximations for fractional advection-dispersion flow equations. J Comput Appl Math 172(1):65–77MathSciNet
61.
Zurück zum Zitat Tian W, Zhou H, Deng W (2015) A class of second order difference approximations for solving space fractional diffusion equations. Math Comput 84(294):1703–1727MathSciNet Tian W, Zhou H, Deng W (2015) A class of second order difference approximations for solving space fractional diffusion equations. Math Comput 84(294):1703–1727MathSciNet
62.
Zurück zum Zitat Thomas JW (2013) Numerical partial differential equations: finite difference methods, vol 22. Springer Science & Business Media, Berlin Thomas JW (2013) Numerical partial differential equations: finite difference methods, vol 22. Springer Science & Business Media, Berlin
63.
Zurück zum Zitat Varga RS (2010) Gersgorin and his circles, vol 36. Springer Science & Business Media, Berlin Varga RS (2010) Gersgorin and his circles, vol 36. Springer Science & Business Media, Berlin
Metadaten
Titel
Finite difference method for the Riesz space distributed-order advection–diffusion equation with delay in 2D: convergence and stability
verfasst von
Mahdi Saedshoar Heris
Mohammad Javidi
Publikationsdatum
18.04.2024
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 12/2024
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-024-06112-x