Skip to main content

2020 | OriginalPaper | Buchkapitel

Finite Element Analysis and Failure Mechanisms of Porous Biomaterial Architecture for Prosthetic Device

verfasst von : Prashant Athanker, Amit Singh

Erschienen in: Reliability and Risk Assessment in Engineering

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Many researchers have studied that porous unit cell-based architecture design and fabrication by additive manufacturing technique is proven to achieve similar mechanical characterization of trabecular bone. In this article, the micro-stress-strain distribution and failure mechanisms of bio-metal at four different types of porous architecture, chosen as X, Star, Cross and Octet lattice structures, with defined pore size, are studied. The unit cell-based structures have been modeled using INTRALATTICE CAD software, with specific pore size, strut aspect ratio (radius/length) and unit cell size. INTRALATTICE is capable of an efficient unit cell shape modeling and part design. For linear and nonlinear finite element (FE) analysis of above porous architectures, commercial CAE ANSYS and HyperMesh software have been used. 1D Beam and 3D tetra elements have been used to model the structure under compressive loads. The finite element (FE) results of all the unit cell-based architectures have been compared and identify which architecture has less stiffness response during the compressive loads. Subsequently, the micro-stress-strain distribution behaviors of all four porous structures have been illustrated through Johnson-Cook (nonlinear) FE model. This methodology has been used for estimating the structural response and failure mechanisms of unit cell geometry. Consequently, the unit cell type and size were modified to encountered desired Young’s modulus and yield stress under compressive loading condition. At last of this investigation, to check the CAE software reliability, for which validation part has been done with previously reported literature, that was performed both experimental and FE study.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nouri A, Hodgson PD, Wen C (2010) Biomimetic porous titanium scaffolds for orthopedic and dental applications. In: Biomimetics, learning from nature, pp 415–450 Nouri A, Hodgson PD, Wen C (2010) Biomimetic porous titanium scaffolds for orthopedic and dental applications. In: Biomimetics, learning from nature, pp 415–450
2.
Zurück zum Zitat Torres-Sánchez C (2010) Definition of a periodically distributed porosity gradient in functionally graded materials to be used as bone scaffolds. In: Proceedings of UK MMSG Strathclyde, pp 1–23 Torres-Sánchez C (2010) Definition of a periodically distributed porosity gradient in functionally graded materials to be used as bone scaffolds. In: Proceedings of UK MMSG Strathclyde, pp 1–23
3.
Zurück zum Zitat Arabnejad S, Johnston RB, Pura JA, Singh B, Tanzer M, Pasini D (2016) High-strength porous biomaterials for bone replacement: a strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta Biomaterialia 30:345–356 Arabnejad S, Johnston RB, Pura JA, Singh B, Tanzer M, Pasini D (2016) High-strength porous biomaterials for bone replacement: a strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta Biomaterialia 30:345–356
4.
Zurück zum Zitat Miao X, Sun D (2010) Graded/gradient porous biomaterials. Materials 3(1):26–47CrossRef Miao X, Sun D (2010) Graded/gradient porous biomaterials. Materials 3(1):26–47CrossRef
5.
Zurück zum Zitat Marin E, Fedrizzi L, Zagra L (2010) Porous metallic structures for orthopaedic applications: a short review of materials and technologies. Eur Orthop Traumatol 1(3–4):103–109CrossRef Marin E, Fedrizzi L, Zagra L (2010) Porous metallic structures for orthopaedic applications: a short review of materials and technologies. Eur Orthop Traumatol 1(3–4):103–109CrossRef
6.
Zurück zum Zitat Wieding J, Jonitz A, Bader R (2012) The effect of structural design on mechanical properties and cellular response of additive manufactured titanium scaffolds. Materials 5(8):1336–1347CrossRef Wieding J, Jonitz A, Bader R (2012) The effect of structural design on mechanical properties and cellular response of additive manufactured titanium scaffolds. Materials 5(8):1336–1347CrossRef
7.
Zurück zum Zitat Heinl P, Müller L, Körner C, Singer RF, Müller FA (2008) Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater 4(5):1536–1544CrossRef Heinl P, Müller L, Körner C, Singer RF, Müller FA (2008) Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater 4(5):1536–1544CrossRef
8.
Zurück zum Zitat Levine B (2008) A new era in porous metals: applications in orthopaedics. Adv Eng Mater 10(9):788–792CrossRef Levine B (2008) A new era in porous metals: applications in orthopaedics. Adv Eng Mater 10(9):788–792CrossRef
9.
Zurück zum Zitat Davis ME (2002) Ordered porous materials for emerging applications. Nature 417(6891):813–821CrossRef Davis ME (2002) Ordered porous materials for emerging applications. Nature 417(6891):813–821CrossRef
10.
Zurück zum Zitat Yan C, Hao L, Hussein A, Raymont D (2012) Evaluations of cellular lattice structures manufactured using selective laser melting. Int J Mach Tools Manuf 62:32–38CrossRef Yan C, Hao L, Hussein A, Raymont D (2012) Evaluations of cellular lattice structures manufactured using selective laser melting. Int J Mach Tools Manuf 62:32–38CrossRef
11.
Zurück zum Zitat Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal Foams : a design guide. Butterworth-Heinemann Publication Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal Foams : a design guide. Butterworth-Heinemann Publication
16.
Zurück zum Zitat Smith M, Guan Z, Cantwell WJ (2013) Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int J Mech Sci 67:28–41CrossRef Smith M, Guan Z, Cantwell WJ (2013) Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int J Mech Sci 67:28–41CrossRef
17.
Zurück zum Zitat Nguyen J, Park S, Rosen DW, Folgar L, Williams J (2012) Conformal lattice structure design and fabrication. In: Proceedings of 23rd annual international solid freeform fabrication symposium—an additive manufacturing conference, SFF, pp 138–161 Nguyen J, Park S, Rosen DW, Folgar L, Williams J (2012) Conformal lattice structure design and fabrication. In: Proceedings of 23rd annual international solid freeform fabrication symposium—an additive manufacturing conference, SFF, pp 138–161
18.
Zurück zum Zitat Hermawan H, Ramdan D, Djuansjah JRP (2011) Metals for biomedical applications. In: Biomedical engineering—from theory to applications, pp 411–430 Hermawan H, Ramdan D, Djuansjah JRP (2011) Metals for biomedical applications. In: Biomedical engineering—from theory to applications, pp 411–430
19.
Zurück zum Zitat Merkt S, Hinke C, Bültmann J, Brandt M, Xie YM (2015) Mechanical response of TiAl6V4 lattice structures manufactured by selective laser melting in quasistatic and dynamic compression tests. J Laser Appl 27(S1):S17006CrossRef Merkt S, Hinke C, Bültmann J, Brandt M, Xie YM (2015) Mechanical response of TiAl6V4 lattice structures manufactured by selective laser melting in quasistatic and dynamic compression tests. J Laser Appl 27(S1):S17006CrossRef
Metadaten
Titel
Finite Element Analysis and Failure Mechanisms of Porous Biomaterial Architecture for Prosthetic Device
verfasst von
Prashant Athanker
Amit Singh
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-3746-2_45

Neuer Inhalt