Skip to main content
Erschienen in: Strength of Materials 3/2018

28.08.2018

Finite Element Analysis of Thermoelastic Fiber-Reinforced Anisotropic Hollow Cylinder with Dual-Phase-Lag Model

verfasst von: A. D. Hobiny, I. A. Abbas, F. Berto

Erschienen in: Strength of Materials | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present paper, we have constructed the equations for generalized thermoelasticity of a fiber-reinforced anisotropic hollow cylinder. The formulation is applied in the context of dualphase-lag model. An application of hollow cylinder is investigated for the outer surface is traction free and thermally isolated, while the inner surface is traction free and subjected to thermal shock. The problem is solved numerically using a finite element method. The results of displacement, temperature and radial and hoop stress are obtained and then presented graphically. Finally, the comparisons are made between the results predicted by the coupled theory, Lord and Shulman theory and dual-phase-lag model in presence and absence of reinforcement.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. J. Belfield, T. G. Rogers, and A. J. M. Spencer, “Stress in elastic plates reinforced by fibres lying in concentric circles,” J. Mech. Phys. Solids, 31, No. 1, 25–54 (1983).CrossRef A. J. Belfield, T. G. Rogers, and A. J. M. Spencer, “Stress in elastic plates reinforced by fibres lying in concentric circles,” J. Mech. Phys. Solids, 31, No. 1, 25–54 (1983).CrossRef
2.
Zurück zum Zitat Z. Hashin and W. B. Rosen, “The elastic moduli of fiber-reinforced materials,” J. Appl. Mech., 31, 223–232 (1964).CrossRef Z. Hashin and W. B. Rosen, “The elastic moduli of fiber-reinforced materials,” J. Appl. Mech., 31, 223–232 (1964).CrossRef
3.
Zurück zum Zitat H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids, 15, No. 5, 299–309 (1967).CrossRef H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids, 15, No. 5, 299–309 (1967).CrossRef
4.
Zurück zum Zitat A. E. Green and K. A. Lindsay, “Thermoelasticity,” J. Elasticity, 2, No. 1, 1–7 (1972).CrossRef A. E. Green and K. A. Lindsay, “Thermoelasticity,” J. Elasticity, 2, No. 1, 1–7 (1972).CrossRef
5.
Zurück zum Zitat R. S. Dhaliwal and H. H. Sherief, “Generalized thermoelasticity for anisotropic media,” Q. Appl. Math., 38, 1–8 (1980).CrossRef R. S. Dhaliwal and H. H. Sherief, “Generalized thermoelasticity for anisotropic media,” Q. Appl. Math., 38, 1–8 (1980).CrossRef
6.
Zurück zum Zitat D. Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior, Taylor & Francis, Washington (1996). D. Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior, Taylor & Francis, Washington (1996).
7.
Zurück zum Zitat D. Y. Tzou, “A unified approach for heat conduction from macro- to micro-scales,” J. Heat Transfer, 117, No. 1, 8–16 (1995).CrossRef D. Y. Tzou, “A unified approach for heat conduction from macro- to micro-scales,” J. Heat Transfer, 117, No. 1, 8–16 (1995).CrossRef
8.
Zurück zum Zitat D. Y. Tzou, “Experimental support for the lagging behavior in heat propagation,” J. Thermophys. Heat Tr., 9, No. 4, 686–693 (1995).CrossRef D. Y. Tzou, “Experimental support for the lagging behavior in heat propagation,” J. Thermophys. Heat Tr., 9, No. 4, 686–693 (1995).CrossRef
9.
Zurück zum Zitat A. E. Abouelregal, “A problem of a semi-infinite medium subjected to exponential heating using a dual-phase-lag thermoelastic model,” Appl. Math., 2, 619–624 (2011).CrossRef A. E. Abouelregal, “A problem of a semi-infinite medium subjected to exponential heating using a dual-phase-lag thermoelastic model,” Appl. Math., 2, 619–624 (2011).CrossRef
10.
Zurück zum Zitat P. D. S. Verma, “Magnetoelastic shear waves in self-reinforced bodies,” Int. J. Eng. Sci., 24, No. 7, 1067–1073 (1986).CrossRef P. D. S. Verma, “Magnetoelastic shear waves in self-reinforced bodies,” Int. J. Eng. Sci., 24, No. 7, 1067–1073 (1986).CrossRef
11.
Zurück zum Zitat B. Singh, “Wave propagation in in thermally conducting linear fibre-reinforced composite materials,” Arch. Appl. Mech., 75, 513–520 (2006).CrossRef B. Singh, “Wave propagation in in thermally conducting linear fibre-reinforced composite materials,” Arch. Appl. Mech., 75, 513–520 (2006).CrossRef
12.
Zurück zum Zitat M. I. A. Othman and I. A. Abbas, “Effect of rotation on plane waves at the free surface of a fibre-reinforced thermoelastic half-space using the finite element method,” Meccanica, 46, No. 2, 413–421 (2011).CrossRef M. I. A. Othman and I. A. Abbas, “Effect of rotation on plane waves at the free surface of a fibre-reinforced thermoelastic half-space using the finite element method,” Meccanica, 46, No. 2, 413–421 (2011).CrossRef
13.
Zurück zum Zitat I. A. Abbas, “Generalized magneto-thermoelastic interaction in a fiber-reinforced anisotropic hollow cylinder,” Int. J. Thermophys., 33, No. 3, 567–579 (2012).CrossRef I. A. Abbas, “Generalized magneto-thermoelastic interaction in a fiber-reinforced anisotropic hollow cylinder,” Int. J. Thermophys., 33, No. 3, 567–579 (2012).CrossRef
14.
Zurück zum Zitat A. Chattopadhyay and S. Choudhury, “Propagation, reflection and transmission of magnetoelastic shear waves in a self-reinforced media,” Int. J. Eng. Sci., 28, No. 6, 485–495 (1990).CrossRef A. Chattopadhyay and S. Choudhury, “Propagation, reflection and transmission of magnetoelastic shear waves in a self-reinforced media,” Int. J. Eng. Sci., 28, No. 6, 485–495 (1990).CrossRef
15.
Zurück zum Zitat A. Chattopadhyay and S. Choudhury, “Magnetoelastic shear waves in an infinite self-reinforced plate,” Int. J. Numer. Anal. Met., 19, No. 4, 289–304 (1995).CrossRef A. Chattopadhyay and S. Choudhury, “Magnetoelastic shear waves in an infinite self-reinforced plate,” Int. J. Numer. Anal. Met., 19, No. 4, 289–304 (1995).CrossRef
16.
Zurück zum Zitat X. Tian, Y. Shen, C. Chen, and T. He, “A direct finite element method study of generalized thermoelastic problems,” Int. J. Solids Struct., 43, 2050–2063 (2006).CrossRef X. Tian, Y. Shen, C. Chen, and T. He, “A direct finite element method study of generalized thermoelastic problems,” Int. J. Solids Struct., 43, 2050–2063 (2006).CrossRef
17.
Zurück zum Zitat I. A. Abbas and H. M. Youssef, “Finite element analysis of two-temperature generalized magnetothermoelasticity,” Arch. Appl. Mech., 79, No. 10, 917–925 (2009).CrossRef I. A. Abbas and H. M. Youssef, “Finite element analysis of two-temperature generalized magnetothermoelasticity,” Arch. Appl. Mech., 79, No. 10, 917–925 (2009).CrossRef
18.
Zurück zum Zitat I. A. Abbas, “Generalized magneto-thermoelasticity in a non-homogeneous isotropic hollow cylinder using finite element method,” Arch. Appl. Mech., 79, No. 1, 41–50 (2009).CrossRef I. A. Abbas, “Generalized magneto-thermoelasticity in a non-homogeneous isotropic hollow cylinder using finite element method,” Arch. Appl. Mech., 79, No. 1, 41–50 (2009).CrossRef
19.
Zurück zum Zitat I. A. Abbas and A. N. Abd-alla, “Effects of thermal relaxations on thermoelastic interactions in an infinite orthotropic elastic medium with acylindrical cavity,” Arch. Appl. Mech., 78, 283–293 (2008).CrossRef I. A. Abbas and A. N. Abd-alla, “Effects of thermal relaxations on thermoelastic interactions in an infinite orthotropic elastic medium with acylindrical cavity,” Arch. Appl. Mech., 78, 283–293 (2008).CrossRef
20.
Zurück zum Zitat I. A. Abbas and M. I. A. Othman, “Generalized thermoelasticity of thermal shock problem in an isotropic hollow cylinder and temperature dependent elastic moduli,” Chinese Phys. B, 21, No. 1, 014601 (2012).CrossRef I. A. Abbas and M. I. A. Othman, “Generalized thermoelasticity of thermal shock problem in an isotropic hollow cylinder and temperature dependent elastic moduli,” Chinese Phys. B, 21, No. 1, 014601 (2012).CrossRef
21.
Zurück zum Zitat I. A. Abbas and M. I. A. Othman, “Generalized thermoelasticity of thermal shock problem in a nonhomogeneous isotropic hollow cylinder with energy dissipation,” Int. J. Thermophys., 33, No. 5, 913–923 (2012).CrossRef I. A. Abbas and M. I. A. Othman, “Generalized thermoelasticity of thermal shock problem in a nonhomogeneous isotropic hollow cylinder with energy dissipation,” Int. J. Thermophys., 33, No. 5, 913–923 (2012).CrossRef
22.
Zurück zum Zitat R. Kumar, V. Gupta, and I. A. Abbas, “Plane deformation due to thermal source in fractional order thermoelastic media,” J. Comput. Theor. Nanos., 10, No. 10, 2520– 2525 (2013).CrossRef R. Kumar, V. Gupta, and I. A. Abbas, “Plane deformation due to thermal source in fractional order thermoelastic media,” J. Comput. Theor. Nanos., 10, No. 10, 2520– 2525 (2013).CrossRef
23.
Zurück zum Zitat I. A. Abbas and A. Zenkour, “Two-temperature generalized thermoelastic interaction in an infinite fiber-reinforced anisotropic plate containing a circular cavity with two relaxation times,” J. Comput. Theor. Nanos., 11, No. 1, 1–7 (2014).CrossRef I. A. Abbas and A. Zenkour, “Two-temperature generalized thermoelastic interaction in an infinite fiber-reinforced anisotropic plate containing a circular cavity with two relaxation times,” J. Comput. Theor. Nanos., 11, No. 1, 1–7 (2014).CrossRef
24.
Zurück zum Zitat P. Wriggers, Nonlinear Finite Element Methods, Springer, Berlin–Heidelberg (2008). P. Wriggers, Nonlinear Finite Element Methods, Springer, Berlin–Heidelberg (2008).
Metadaten
Titel
Finite Element Analysis of Thermoelastic Fiber-Reinforced Anisotropic Hollow Cylinder with Dual-Phase-Lag Model
verfasst von
A. D. Hobiny
I. A. Abbas
F. Berto
Publikationsdatum
28.08.2018
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 3/2018
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-018-9983-8

Weitere Artikel der Ausgabe 3/2018

Strength of Materials 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.