Skip to main content
Erschienen in: Journal of Scientific Computing 1/2018

21.04.2018

Finite Element Approximation for the Fractional Eigenvalue Problem

verfasst von: Juan Pablo Borthagaray, Leandro M. Del Pezzo, Sandra Martínez

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The purpose of this work is to study a finite element method for finding solutions to the eigenvalue problem for the fractional Laplacian. We prove that the discrete eigenvalue problem converges to the continuous one and we show the order of such convergence. Finally, we perform some numerical experiments and compare our results with previous work by other authors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Acosta, G., Bersetche, F., Borthagaray, J.P.: A short FEM implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian. Comput. Math. Appl. 74(4), 784–816 (2017)MathSciNetCrossRefMATH Acosta, G., Bersetche, F., Borthagaray, J.P.: A short FEM implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian. Comput. Math. Appl. 74(4), 784–816 (2017)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55(2), 472–495 (2017)MathSciNetCrossRefMATH Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55(2), 472–495 (2017)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Ainsworth, M., Glusa, C.: Towards an efficient finite element method for the integral fractional Laplacian on polygonal domains (2017). arXiv:1708.01923v1 Ainsworth, M., Glusa, C.: Towards an efficient finite element method for the integral fractional Laplacian on polygonal domains (2017). arXiv:​1708.​01923v1
4.
Zurück zum Zitat Amore, P., Fernández, F.M., Hofmann, C.P., Sáenz, R.A.: Collocation method for fractional quantum mechanics. J. Math. Phys. 51(12), 122101 (2010)MathSciNetCrossRefMATH Amore, P., Fernández, F.M., Hofmann, C.P., Sáenz, R.A.: Collocation method for fractional quantum mechanics. J. Math. Phys. 51(12), 122101 (2010)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Antoine, X., Tang, Q., Zhang, Y.: On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions. J. Comput. Phys. 325, 74–97 (2016)MathSciNetCrossRefMATH Antoine, X., Tang, Q., Zhang, Y.: On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions. J. Comput. Phys. 325, 74–97 (2016)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Babuška, I., Osborn, J.: Eigenvalue problems. In: Handbook of Numerical Analysis, Vol. II, Handb. Numer. Anal., II, pp. 641–787. North-Holland, Amsterdam (1991) Babuška, I., Osborn, J.: Eigenvalue problems. In: Handbook of Numerical Analysis, Vol. II, Handb. Numer. Anal., II, pp. 641–787. North-Holland, Amsterdam (1991)
7.
Zurück zum Zitat Bao, W., Ruan, X., Shen, J., Sheng, C.: Fundamental gaps of the fractional Schrödinger operator. (2018). arXiv preprint arXiv:1801.06517 Bao, W., Ruan, X., Shen, J., Sheng, C.: Fundamental gaps of the fractional Schrödinger operator. (2018). arXiv preprint arXiv:​1801.​06517
8.
Zurück zum Zitat Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection–dispersion equation. Water Resour. Res. 36(6), 1403–1412 (2000)CrossRef Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection–dispersion equation. Water Resour. Res. 36(6), 1403–1412 (2000)CrossRef
9.
Zurück zum Zitat Bertoin, J.: Lévy Processes, Volume 121 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1996) Bertoin, J.: Lévy Processes, Volume 121 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1996)
11.
Zurück zum Zitat Boffi, D., Brezzi, F., Gastaldi, L.: On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comput. 69(229), 121–140 (2000)MathSciNetCrossRefMATH Boffi, D., Brezzi, F., Gastaldi, L.: On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comput. 69(229), 121–140 (2000)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Buades, A., Coll, B., Morel, J.M.: Image denoising methods. A new nonlocal principle. SIAM Rev. 52(1), 113–147 (2010). Reprint of “A review of image denoising algorithms, with a new one” [MR2162865]MathSciNetCrossRefMATH Buades, A., Coll, B., Morel, J.M.: Image denoising methods. A new nonlocal principle. SIAM Rev. 52(1), 113–147 (2010). Reprint of “A review of image denoising algorithms, with a new one” [MR2162865]MathSciNetCrossRefMATH
14.
Zurück zum Zitat Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62(5), 597–638 (2009)MathSciNetCrossRefMATH Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62(5), 597–638 (2009)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75(2), 305–332 (2002)CrossRef Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75(2), 305–332 (2002)CrossRef
16.
Zurück zum Zitat Chen, Z.-Q., Song, R.: Two-sided eigenvalue estimates for subordinate processes in domains. J. Funct. Anal. 226(1), 90–113 (2005)MathSciNetCrossRefMATH Chen, Z.-Q., Song, R.: Two-sided eigenvalue estimates for subordinate processes in domains. J. Funct. Anal. 226(1), 90–113 (2005)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Clément, P.: Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. RAIRO Analyse Numérique 9(R–2), 77–84 (1975)MathSciNetMATH Clément, P.: Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. RAIRO Analyse Numérique 9(R–2), 77–84 (1975)MathSciNetMATH
18.
Zurück zum Zitat Cont, Rama, Tankov, Peter: Financial Modelling with Jump Processes. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall, Boca Raton (2004)MATH Cont, Rama, Tankov, Peter: Financial Modelling with Jump Processes. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall, Boca Raton (2004)MATH
19.
Zurück zum Zitat Cushman, J.H., Ginn, T.R.: Nonlocal dispersion in media with continuously evolving scales of heterogeneity. Transp. Porous Media 13(1), 123–138 (1993)CrossRef Cushman, J.H., Ginn, T.R.: Nonlocal dispersion in media with continuously evolving scales of heterogeneity. Transp. Porous Media 13(1), 123–138 (1993)CrossRef
20.
Zurück zum Zitat Del Pezzo, L.M., Quaas, A.: Global bifurcation for fractional \(p\)-Laplacian and an application. Z. Anal. Anwend. 35(4), 411–447 (2016)MathSciNetCrossRefMATH Del Pezzo, L.M., Quaas, A.: Global bifurcation for fractional \(p\)-Laplacian and an application. Z. Anal. Anwend. 35(4), 411–447 (2016)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Demengel, F., Demengel, G.: Functional spaces for the theory of elliptic partial differential equations. Universitext. Springer, London; EDP Sciences, Les Ulis, (2012). Translated from the 2007 French original by Reinie Erné Demengel, F., Demengel, G.: Functional spaces for the theory of elliptic partial differential equations. Universitext. Springer, London; EDP Sciences, Les Ulis, (2012). Translated from the 2007 French original by Reinie Erné
22.
Zurück zum Zitat Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)MathSciNetCrossRefMATH Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Duo, S., Zhang, Y.: Computing the ground and first excited states of the fractional Schrödinger equation in an infinite potential well. Commun. Comput. Phys. 18(2), 321–350 (2015)MathSciNetCrossRefMATH Duo, S., Zhang, Y.: Computing the ground and first excited states of the fractional Schrödinger equation in an infinite potential well. Commun. Comput. Phys. 18(2), 321–350 (2015)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Dyda, B., Kuznetsov, A., Kwaśnicki, M.: Eigenvalues of the fractional Laplace operator in the unit ball. J. Lond. Math. Soc. 95(2), 500–518 (2017)MathSciNetCrossRefMATH Dyda, B., Kuznetsov, A., Kwaśnicki, M.: Eigenvalues of the fractional Laplace operator in the unit ball. J. Lond. Math. Soc. 95(2), 500–518 (2017)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Dyda, B., Kuznetsov, A., Kwaśnicki, M.: Fractional Laplace operator and Meijer G-function. Constr. Approx. 45(3), 427–448 (2017)MathSciNetCrossRefMATH Dyda, B., Kuznetsov, A., Kwaśnicki, M.: Fractional Laplace operator and Meijer G-function. Constr. Approx. 45(3), 427–448 (2017)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Gatto, P., Hesthaven, J.S.: Numerical approximation of the fractional Laplacian via hp-finite elements, with an application to image denoising. J. Sci. Comp. 65(1), 249–270 (2015)MathSciNetCrossRefMATH Gatto, P., Hesthaven, J.S.: Numerical approximation of the fractional Laplacian via hp-finite elements, with an application to image denoising. J. Sci. Comp. 65(1), 249–270 (2015)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Ghelardoni, P., Magherini, C.: A matrix method for fractional Sturm–Liouville problems on bounded domain. Adv. Comput. Math. 43(6), 1377–1401 (2017)MathSciNetCrossRefMATH Ghelardoni, P., Magherini, C.: A matrix method for fractional Sturm–Liouville problems on bounded domain. Adv. Comput. Math. 43(6), 1377–1401 (2017)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)MathSciNetCrossRefMATH Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Volume 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, (1985) Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Volume 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, (1985)
30.
Zurück zum Zitat Grubb, G.: Fractional laplacians on domains, a development of Hörmander’s theory of \(\mu \)-transmission pseudodifferential operators. Adv. Math. 268, 478–528 (2015)MathSciNetCrossRefMATH Grubb, G.: Fractional laplacians on domains, a development of Hörmander’s theory of \(\mu \)-transmission pseudodifferential operators. Adv. Math. 268, 478–528 (2015)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Grubb, G.: Spectral results for mixed problems and fractional elliptic operators. J. Math. Anal. Appl. 421(2), 1616–1634 (2015)MathSciNetCrossRefMATH Grubb, G.: Spectral results for mixed problems and fractional elliptic operators. J. Math. Anal. Appl. 421(2), 1616–1634 (2015)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin, (1995). Reprint of the 1980 edition Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin, (1995). Reprint of the 1980 edition
33.
Zurück zum Zitat Klafter, J., Sokolov, I.M.: Anomalous diffusion spreads its wings. Phys. World 18(8), 29 (2005)CrossRef Klafter, J., Sokolov, I.M.: Anomalous diffusion spreads its wings. Phys. World 18(8), 29 (2005)CrossRef
34.
Zurück zum Zitat Kufner, A.: Weighted Sobolev Spaces. A Wiley-Interscience Publication. Wiley, New York, (1985). Translated from the Czech Kufner, A.: Weighted Sobolev Spaces. A Wiley-Interscience Publication. Wiley, New York, (1985). Translated from the Czech
35.
Zurück zum Zitat Kulczycki, T., Kwaśnicki, M., Małecki, J., Stos, A.: Spectral properties of the Cauchy process on half-line and interval. Proc. Lond. Math. Soc. (3) 101(2), 589–622 (2010)MathSciNetCrossRefMATH Kulczycki, T., Kwaśnicki, M., Małecki, J., Stos, A.: Spectral properties of the Cauchy process on half-line and interval. Proc. Lond. Math. Soc. (3) 101(2), 589–622 (2010)MathSciNetCrossRefMATH
36.
38.
Zurück zum Zitat Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. 1. Springer, Berlin (2012)MATH Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. 1. Springer, Berlin (2012)MATH
39.
40.
41.
Zurück zum Zitat McCay, B.M., Narasimhan, M.N.L.: Theory of nonlocal electromagnetic fluids. Arch. Mech. (Arch. Mech. Stos.) 33(3), 365–384 (1981)MathSciNetMATH McCay, B.M., Narasimhan, M.N.L.: Theory of nonlocal electromagnetic fluids. Arch. Mech. (Arch. Mech. Stos.) 33(3), 365–384 (1981)MathSciNetMATH
42.
Zurück zum Zitat Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37(31), R161–R208 (2004)MathSciNetCrossRefMATH Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37(31), R161–R208 (2004)MathSciNetCrossRefMATH
43.
Zurück zum Zitat Raviart, P.-A., Thomas, J.-M.: Introduction à l’analyse numérique des équations aux dérivées partielles. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris, (1983) Raviart, P.-A., Thomas, J.-M.: Introduction à l’analyse numérique des équations aux dérivées partielles. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris, (1983)
44.
Zurück zum Zitat Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. Journal de Mathématiques Pures et Appliquées 101(3), 275–302 (2014)MathSciNetCrossRefMATH Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. Journal de Mathématiques Pures et Appliquées 101(3), 275–302 (2014)MathSciNetCrossRefMATH
45.
Zurück zum Zitat Ros-Oton, X., Serra, J.: Local integration by parts and Pohozaev identities for higher order fractional Laplacians. Discrete Contin. Dyn. Syst. 35(5), 2131–2150 (2015)MathSciNetMATH Ros-Oton, X., Serra, J.: Local integration by parts and Pohozaev identities for higher order fractional Laplacians. Discrete Contin. Dyn. Syst. 35(5), 2131–2150 (2015)MathSciNetMATH
46.
Zurück zum Zitat Scott, L.Ridgway, Zhang, Shangyou: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)MathSciNetCrossRefMATH Scott, L.Ridgway, Zhang, Shangyou: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)MathSciNetCrossRefMATH
47.
Zurück zum Zitat Servadei, R.: The Yamabe equation in a non-local setting. Adv. Nonlinear Anal. 2(3), 235–270 (2013)MathSciNetMATH Servadei, R.: The Yamabe equation in a non-local setting. Adv. Nonlinear Anal. 2(3), 235–270 (2013)MathSciNetMATH
48.
Zurück zum Zitat Servadei, R., Valdinoci, E.: A Brezis–Nirenberg result for non-local critical equations in low dimension. Commun. Pure Appl. Anal. 12(6), 2445–2464 (2013)MathSciNetCrossRefMATH Servadei, R., Valdinoci, E.: A Brezis–Nirenberg result for non-local critical equations in low dimension. Commun. Pure Appl. Anal. 12(6), 2445–2464 (2013)MathSciNetCrossRefMATH
49.
Zurück zum Zitat Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. 33(5), 2105–2137 (2013)MathSciNetMATH Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. 33(5), 2105–2137 (2013)MathSciNetMATH
50.
Zurück zum Zitat Servadei, R., Valdinoci, E.: On the spectrum of two different fractional operators. Proc. R. Soc. Edinburgh Sect. A 144(4), 831–855 (2014)MathSciNetCrossRefMATH Servadei, R., Valdinoci, E.: On the spectrum of two different fractional operators. Proc. R. Soc. Edinburgh Sect. A 144(4), 831–855 (2014)MathSciNetCrossRefMATH
51.
Zurück zum Zitat Servadei, R., Valdinoci, E.: Weak and viscosity solutions of the fractional Laplace equation. Publ. Mat. 58(1), 133–154 (2014)MathSciNetCrossRefMATH Servadei, R., Valdinoci, E.: Weak and viscosity solutions of the fractional Laplace equation. Publ. Mat. 58(1), 133–154 (2014)MathSciNetCrossRefMATH
52.
Zurück zum Zitat Servadei, R., Valdinoci, E.: The Brezis–Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367(1), 67–102 (2015)MathSciNetCrossRefMATH Servadei, R., Valdinoci, E.: The Brezis–Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367(1), 67–102 (2015)MathSciNetCrossRefMATH
53.
Zurück zum Zitat Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)MathSciNetCrossRefMATH Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)MathSciNetCrossRefMATH
54.
Zurück zum Zitat Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 67–112 (2007)MathSciNetCrossRefMATH Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 67–112 (2007)MathSciNetCrossRefMATH
55.
Zurück zum Zitat Valdinoci, E.: From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl. S\(\vec{\rm e}\)MA 49, 33–44 (2009) Valdinoci, E.: From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl. S\(\vec{\rm e}\)MA 49, 33–44 (2009)
57.
Zurück zum Zitat Zoia, A., Rosso, A., Kardar, M.: Fractional Laplacian in bounded domains. Phys. Rev. E (3) 76(2), 021116, 11 (2007)MathSciNetCrossRef Zoia, A., Rosso, A., Kardar, M.: Fractional Laplacian in bounded domains. Phys. Rev. E (3) 76(2), 021116, 11 (2007)MathSciNetCrossRef
Metadaten
Titel
Finite Element Approximation for the Fractional Eigenvalue Problem
verfasst von
Juan Pablo Borthagaray
Leandro M. Del Pezzo
Sandra Martínez
Publikationsdatum
21.04.2018
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2018
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0710-1

Weitere Artikel der Ausgabe 1/2018

Journal of Scientific Computing 1/2018 Zur Ausgabe