Skip to main content
Erschienen in: Journal of Scientific Computing 2/2018

07.02.2018

Finite Fourier Frame Approximation Using the Inverse Polynomial Reconstruction Method

verfasst von: Xinjuan Chen, Jae-Hun Jung, Anne Gelb

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In several applications, data are collected in the frequency (Fourier) domain non-uniformly, either by design or as a consequence of inexact measurements. The two major bottlenecks for image reconstruction from non-uniform Fourier data are (i) there is no obvious way to perform the numerical approximation, as the non-uniform Fourier data is not amenable to fast transform techniques and resampling the data first to uniform spacing is often neither accurate or robust; and (ii) the Gibbs phenomenon is apparent when the underlying function (image) is piecewise smooth, an occurrence in nearly every application. Recent investigations suggest that it may be useful to view the non-uniform Fourier samples as Fourier frame coefficients when designing reconstruction algorithms that attempt to mitigate either of these fundamental problems. The inverse polynomial reconstruction method (IPRM) was developed to resolve the Gibbs phenomenon in the reconstruction of piecewise analytic functions from spectral data, notably Fourier data. This paper demonstrates that the IPRM is also suitable for approximating the finite inverse Fourier frame operator as a projection onto the weighted \(L_2\) space of orthogonal polynomials. Moreover, the IPRM can also be used to remove the Gibbs phenomenon from the Fourier frame approximation when the underlying function is piecewise smooth. The one-dimensional numerical results presented here demonstrate that using the IPRM in this way yields a robust, stable, and accurate approximation from non-uniform Fourier data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
We note that iterative procedures using \(l^1\) regularization are also commonly employed, see e.g. [30]. While these methods are often very effective, the purpose of our paper is to develop an analytical framework for a direct solver. Indeed, since the IPRM is a linear construction, it might serve to produce an objective funtion to which a regularization term can be applied.
 
2
The original theorem is written for the interval \([-\pi ,\pi ]\).
 
3
Since \(e_k = e^{i\lambda _k \pi x}\) and \(\lambda _k\) are sampling the conditioning and invertibility of T depends on the sampling pattern.
 
Literatur
1.
Zurück zum Zitat Abramowitz, M., Stegun, I. (eds.): Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series 55. National Bureau of Standards, New York (1964)MATH Abramowitz, M., Stegun, I. (eds.): Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series 55. National Bureau of Standards, New York (1964)MATH
2.
Zurück zum Zitat Adcock, B., Hansen, A.C.: Stable reconstruction in Hilbert spaces and the resolution of the Gibbs phenomenon. Appl. Comput. Harmon. Anal. 32, 357–388 (2012)MathSciNetCrossRefMATH Adcock, B., Hansen, A.C.: Stable reconstruction in Hilbert spaces and the resolution of the Gibbs phenomenon. Appl. Comput. Harmon. Anal. 32, 357–388 (2012)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Adcock, B., Gataric, M., Hansen, A.C.: On stable reconstructions from nonuniform Fourier measurements. SIAM J. Imaging Sci. 7(3), 1690–1723 (2014)MathSciNetCrossRefMATH Adcock, B., Gataric, M., Hansen, A.C.: On stable reconstructions from nonuniform Fourier measurements. SIAM J. Imaging Sci. 7(3), 1690–1723 (2014)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Adcock, B., Gataric, M., Hansen, A.C.: Recovering piecewise smooth functions from nonuniform Fourier measurements. arXiv:1410.0088 (2014) Adcock, B., Gataric, M., Hansen, A.C.: Recovering piecewise smooth functions from nonuniform Fourier measurements. arXiv:​1410.​0088 (2014)
5.
Zurück zum Zitat Barkhudaryan, A., Barkhudaryan, R., Poghosyan, A.: Asymptotic behavior of Eckhoff’s method for Fourier series convergence acceleration. Anal. Theory Appl. 23(3), 228–242 (2007)MathSciNetCrossRefMATH Barkhudaryan, A., Barkhudaryan, R., Poghosyan, A.: Asymptotic behavior of Eckhoff’s method for Fourier series convergence acceleration. Anal. Theory Appl. 23(3), 228–242 (2007)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Batenkov, D.: Complete algebraic reconstruction of piecewise-smooth functions from Fourier data. Math. Comput. 84(295), 2329–2350 (2015)MathSciNetCrossRefMATH Batenkov, D.: Complete algebraic reconstruction of piecewise-smooth functions from Fourier data. Math. Comput. 84(295), 2329–2350 (2015)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Benedetto, J.J., Wu, H.C.: Non-uniform sampling and spiral MRI reconstruction. Proc. SPIE 4119(1), 130–141 (2000)CrossRef Benedetto, J.J., Wu, H.C.: Non-uniform sampling and spiral MRI reconstruction. Proc. SPIE 4119(1), 130–141 (2000)CrossRef
9.
Zurück zum Zitat Chen, H., Shizgal, B.D.: A spectral solution of the Sturm–Liouville equation; comparison of classical and nonclassical basis sets. J. Comput. Appl. Math. 136, 17–35 (2001)MathSciNetCrossRefMATH Chen, H., Shizgal, B.D.: A spectral solution of the Sturm–Liouville equation; comparison of classical and nonclassical basis sets. J. Comput. Appl. Math. 136, 17–35 (2001)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Christensen, O., Lindner, A.M.: Frames of exponentials: lower frame bounds for finite subfamilies and approximation of the inverse frame operator. Linear Algebra Appl. 323(1–3), 117–130 (2001)MathSciNetCrossRefMATH Christensen, O., Lindner, A.M.: Frames of exponentials: lower frame bounds for finite subfamilies and approximation of the inverse frame operator. Linear Algebra Appl. 323(1–3), 117–130 (2001)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, New York (2002)MATH Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, New York (2002)MATH
12.
13.
Zurück zum Zitat Christensen, O., Strohmer, T.: The finite section method and problems in frame theory. J. Approx. Theory 133, 221–237 (2005)MathSciNetCrossRefMATH Christensen, O., Strohmer, T.: The finite section method and problems in frame theory. J. Approx. Theory 133, 221–237 (2005)MathSciNetCrossRefMATH
14.
15.
16.
Zurück zum Zitat Eckhoff, K.S.: Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions. Math. Comput. 64(210), 671–690 (1995)MathSciNetCrossRefMATH Eckhoff, K.S.: Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions. Math. Comput. 64(210), 671–690 (1995)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Feichtinger, H.G., Gröchenig, K., Strohmer, T.: Efficient numerical methods in non-uniform sampling theory. Numer. Math. 69, 423–440 (1995)MathSciNetCrossRefMATH Feichtinger, H.G., Gröchenig, K., Strohmer, T.: Efficient numerical methods in non-uniform sampling theory. Numer. Math. 69, 423–440 (1995)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Gelb, A., Hines, T.: Recovering exponential accuracy from nonharmonic Fourier data through spectral reprojection. J. Sci. Comput. 51, 158–182 (2011)CrossRefMATH Gelb, A., Hines, T.: Recovering exponential accuracy from nonharmonic Fourier data through spectral reprojection. J. Sci. Comput. 51, 158–182 (2011)CrossRefMATH
19.
Zurück zum Zitat Gelb, A., Song, G.: A frame theoretic approach to the nonuniform fast Fourier transform. SIAM J. Numer. Anal. 52(3), 1222–1242 (2014)MathSciNetCrossRefMATH Gelb, A., Song, G.: A frame theoretic approach to the nonuniform fast Fourier transform. SIAM J. Numer. Anal. 52(3), 1222–1242 (2014)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Gottlieb, D., Shu, C.-W., Solomonoff, A., Vandeven, H.: On the Gibbs phenomenon I: recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function. J. Comput. Appl. Math. 43, 81–92 (1992)MathSciNetCrossRefMATH Gottlieb, D., Shu, C.-W., Solomonoff, A., Vandeven, H.: On the Gibbs phenomenon I: recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function. J. Comput. Appl. Math. 43, 81–92 (1992)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Gröchenig, K.: Acceleration of the frame algorithm. Trans. Signal Process. 41(12), 3331–3340 (1993)CrossRefMATH Gröchenig, K.: Acceleration of the frame algorithm. Trans. Signal Process. 41(12), 3331–3340 (1993)CrossRefMATH
23.
Zurück zum Zitat Gröchenig, K.: Localization of frames, Banach frames, and the invertibility of the frame operator. J. Fourier Anal. Appl. 10(2), 105–132 (2004)MathSciNetCrossRefMATH Gröchenig, K.: Localization of frames, Banach frames, and the invertibility of the frame operator. J. Fourier Anal. Appl. 10(2), 105–132 (2004)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Hrycak, T., Gröchenig, K.: Pseudospectral Fourier reconstruction with the modified inverse polynomial reconstruction method. J. Comput. Phys. 229(3), 933–946 (2010)MathSciNetCrossRefMATH Hrycak, T., Gröchenig, K.: Pseudospectral Fourier reconstruction with the modified inverse polynomial reconstruction method. J. Comput. Phys. 229(3), 933–946 (2010)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Jackson, J.I., Meyer, C.H., Nishimura, D.G., Macovski, A.: Selection of a convolution function for Fourier inversion using gridding. IEEE Trans. Med. Imaging 10(3), 473–478 (1991)CrossRef Jackson, J.I., Meyer, C.H., Nishimura, D.G., Macovski, A.: Selection of a convolution function for Fourier inversion using gridding. IEEE Trans. Med. Imaging 10(3), 473–478 (1991)CrossRef
26.
Zurück zum Zitat Jung, J.-H.: A hybrid method for the resolution of the Gibbs phenomenon. In: Hesthaven, J.S., Rønquist, E. M. (eds.) Lecture Notes in Computational Science and Engineering 76, New York, pp. 219–227 (2011) Jung, J.-H.: A hybrid method for the resolution of the Gibbs phenomenon. In: Hesthaven, J.S., Rønquist, E. M. (eds.) Lecture Notes in Computational Science and Engineering 76, New York, pp. 219–227 (2011)
27.
Zurück zum Zitat Jung, J.-H., Shizgal, B.D.: Generalization of the inverse polynomial reconstruction method in the resolution of the Gibbs phenomena. J. Comput. Appl. Math. 172(1), 131–151 (2004)MathSciNetCrossRefMATH Jung, J.-H., Shizgal, B.D.: Generalization of the inverse polynomial reconstruction method in the resolution of the Gibbs phenomena. J. Comput. Appl. Math. 172(1), 131–151 (2004)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Jung, J.-H., Shizgal, B.D.: Short note: on the numerical convergence with the inverse polynomial reconstruction method for the resolution of the Gibbs phenomenon. J. Comput. Phys. 224, 477–488 (2007)MathSciNetCrossRefMATH Jung, J.-H., Shizgal, B.D.: Short note: on the numerical convergence with the inverse polynomial reconstruction method for the resolution of the Gibbs phenomenon. J. Comput. Phys. 224, 477–488 (2007)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Kvernadze, G.: Approximation of the discontinuities of a function by its classical orthogonal polynomial Fourier coefficients. Math. Comput. 79, 2265–2285 (2010)MathSciNetCrossRefMATH Kvernadze, G.: Approximation of the discontinuities of a function by its classical orthogonal polynomial Fourier coefficients. Math. Comput. 79, 2265–2285 (2010)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Lustig, M., Donoho, D., Pauly, J.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)CrossRef Lustig, M., Donoho, D., Pauly, J.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)CrossRef
31.
Zurück zum Zitat Pipe, J.G., Menon, P.: Sampling density compensation in MRI: rationale and an iterative numerical solution. Magn. Reson. Med. 41(1), 179–186 (1999)CrossRef Pipe, J.G., Menon, P.: Sampling density compensation in MRI: rationale and an iterative numerical solution. Magn. Reson. Med. 41(1), 179–186 (1999)CrossRef
32.
Zurück zum Zitat Shizgal, B.D.: Spectral methods based on nonclassical basis functions; the advection diffusion equation. Comput. Fluids 31, 825–843 (2002)MathSciNetCrossRefMATH Shizgal, B.D.: Spectral methods based on nonclassical basis functions; the advection diffusion equation. Comput. Fluids 31, 825–843 (2002)MathSciNetCrossRefMATH
33.
34.
Zurück zum Zitat Solomonoff, A.: Reconstruction of a discontinuous function from a few Fourier coefficients using Bayesian estimation. J. Sci. Comput. 10(1), 29–80 (1995)MathSciNetCrossRefMATH Solomonoff, A.: Reconstruction of a discontinuous function from a few Fourier coefficients using Bayesian estimation. J. Sci. Comput. 10(1), 29–80 (1995)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Song, G., Gelb, A.: Approximating the inverse frame operator from localized frames. Appl. Comput. Harmon. Anal. 35, 94–110 (2013)MathSciNetCrossRefMATH Song, G., Gelb, A.: Approximating the inverse frame operator from localized frames. Appl. Comput. Harmon. Anal. 35, 94–110 (2013)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Viswanathan, A.: Spectral sampling and discontinuity detection methods with application to magnetic resonance imaging. Master’s thesis, Arizona State University, Tempe, Arizona (2008) Viswanathan, A.: Spectral sampling and discontinuity detection methods with application to magnetic resonance imaging. Master’s thesis, Arizona State University, Tempe, Arizona (2008)
37.
Zurück zum Zitat Viswanathan, A., Gelb, A., Cochran, D., Renaut, R.: On reconstruction from non-uniform spectral data. J. Sci. Comput. 45(1–3), 487–513 (2010)MathSciNetCrossRefMATH Viswanathan, A., Gelb, A., Cochran, D., Renaut, R.: On reconstruction from non-uniform spectral data. J. Sci. Comput. 45(1–3), 487–513 (2010)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Young, R.M.: An Introduction to Nonharmonic Fourier Series. Academic Press, New York (1980)MATH Young, R.M.: An Introduction to Nonharmonic Fourier Series. Academic Press, New York (1980)MATH
Metadaten
Titel
Finite Fourier Frame Approximation Using the Inverse Polynomial Reconstruction Method
verfasst von
Xinjuan Chen
Jae-Hun Jung
Anne Gelb
Publikationsdatum
07.02.2018
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2018
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0655-4

Weitere Artikel der Ausgabe 2/2018

Journal of Scientific Computing 2/2018 Zur Ausgabe