Skip to main content

Über dieses Buch

Hilbert space frames have long served as a valuable tool for signal and image processing due to their resilience to additive noise, quantization, and erasures, as well as their ability to capture valuable signal characteristics. More recently, finite frame theory has grown into an important research topic in its own right, with a myriad of applications to pure and applied mathematics, engineering, computer science, and other areas. The number of research publications, conferences, and workshops on this topic has increased dramatically over the past few years, but no survey paper or monograph has yet appeared on the subject.

Edited by two of the leading experts in the field, Finite Frames aims to fill this void in the literature by providing a comprehensive, systematic study of finite frame theory and applications. With carefully selected contributions written by highly experienced researchers, it covers topics including:

* Finite Frame Constructions;
* Optimal Erasure Resilient Frames;
* Quantization of Finite Frames;
* Finite Frames and Compressed Sensing;
* Group and Gabor Frames;
* Fusion Frames.

Despite the variety of its chapters' source and content, the book's notation and terminology are unified throughout and provide a definitive picture of the current state of frame theory.

With a broad range of applications and a clear, full presentation, this book is a highly valuable resource for graduate students and researchers across disciplines such as applied harmonic analysis, electrical engineering, quantum computing, medicine, and more. It is designed to be used as a supplemental textbook, self-study guide, or reference book.



2013 | OriginalPaper | Buchkapitel

Chapter 1. Introduction to Finite Frame Theory

Peter G. Casazza, Gitta Kutyniok, Friedrich Philipp

2013 | OriginalPaper | Buchkapitel

Chapter 2. Constructing Finite Frames with a Given Spectrum

Matthew Fickus, Dustin G. Mixon, Miriam J. Poteet

2013 | OriginalPaper | Buchkapitel

Chapter 3. Spanning and Independence Properties of Finite Frames

Peter G. Casazza, Darrin Speegle

2013 | OriginalPaper | Buchkapitel

Chapter 4. Algebraic Geometry and Finite Frames

Jameson Cahill, Nate Strawn

2013 | OriginalPaper | Buchkapitel

Chapter 5. Group Frames

Shayne Waldron

2013 | OriginalPaper | Buchkapitel

Chapter 6. Gabor Frames in Finite Dimensions

Götz E. Pfander

2013 | OriginalPaper | Buchkapitel

Chapter 7. Frames as Codes

Bernhard G. Bodmann

2013 | OriginalPaper | Buchkapitel

Chapter 8. Quantization and Finite Frames

Alexander M. Powell, Rayan Saab, Özgür Yılmaz

2013 | OriginalPaper | Buchkapitel

Chapter 9. Finite Frames for Sparse Signal Processing

Waheed U. Bajwa, Ali Pezeshki

2013 | OriginalPaper | Buchkapitel

Chapter 10. Finite Frames and Filter Banks

Matthew Fickus, Melody L. Massar, Dustin G. Mixon

2013 | OriginalPaper | Buchkapitel

Chapter 11. The Kadison–Singer and Paulsen Problems in Finite Frame Theory

Peter G. Casazza

2013 | OriginalPaper | Buchkapitel

Chapter 12. Probabilistic Frames: An Overview

Martin Ehler, Kasso A. Okoudjou

2013 | OriginalPaper | Buchkapitel

Chapter 13. Fusion Frames

Peter G. Casazza, Gitta Kutyniok


Weitere Informationen

Premium Partner

Neuer Inhalt

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.



Product Lifecycle Management im Konzernumfeld – Herausforderungen, Lösungsansätze und Handlungsempfehlungen

Für produzierende Unternehmen hat sich Product Lifecycle Management in den letzten Jahrzehnten in wachsendem Maße zu einem strategisch wichtigen Ansatz entwickelt. Forciert durch steigende Effektivitäts- und Effizienzanforderungen stellen viele Unternehmen ihre Product Lifecycle Management-Prozesse und -Informationssysteme auf den Prüfstand. Der vorliegende Beitrag beschreibt entlang eines etablierten Analyseframeworks Herausforderungen und Lösungsansätze im Product Lifecycle Management im Konzernumfeld.
Jetzt gratis downloaden!