Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Pattern Recognition and Image Analysis 4/2022

01.12.2022 | APPLIED PROBLEMS

Finite Normal Mixture Models for the Ensemble Learning of Recurrent Neural Networks with Applications to Currency Pairs

verfasst von: A. K. Gorshenin, A. L. Vilyaev

Erschienen in: Pattern Recognition and Image Analysis | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

The paper proposes the use of related components by the method of the moving separation of mixtures as nontrivial features to expand the feature space in problems of the learning of recurrent neural networks. These features are added based on the approximation of data increments using probabilistic models based on finite normal mixtures. To take into account relationships in the data as well as in related components, the article uses the long short-term memory variant of recurrent architectures. The proposed approach is used to build an automated trading strategy based on an ensemble of the long short-term memory networks for the three most commonly traded currency pairs: euro–US dollar, US dollar–Japanese yen, and euro–pound sterling, for which data are taken from January 2011 to the end of September 2021. It is shown that the profitability of the developed ensemble long short-term memory model using additional features, i.e., information on the probabilistic distribution of data increments, outperforms both the basic methods of algorithmic trading by financial indicators (advantage of up to 32.2% on test data) and well-known approaches based on long short-term memory networks without statistical expansion of the feature space (advantage of up to 23.3%). For the best models within the framework of model trading, the final and annual yields are found to be up to 99% and 54%, respectively.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literatur
1.
5.
Zurück zum Zitat R. D. Edwards, J. Magee, and W. H. C. Bassetti, Technical Analysis of Stock Trends, 11th ed. (CRC Press, Boca Raton, Fla., 2018). CrossRef R. D. Edwards, J. Magee, and W. H. C. Bassetti, Technical Analysis of Stock Trends, 11th ed. (CRC Press, Boca Raton, Fla., 2018). CrossRef
11.
Zurück zum Zitat A. Gorshenin, and V. Korolev, “Modelling of statistical fluctuations of information flows by mixtures of gamma distributions”, in Proc. of 27 th European Conf. on Modelling and Simulation (ECMS 2013), Alesund, Norway, 2013, Ed. by R. T. Bye and H. Zhang (ECMS Webjørn Rekdalsbakken, 2013), pp. 569–572. https://​doi.​org/​10.​7148/​2013-0569 A. Gorshenin, and V. Korolev, “Modelling of statistical fluctuations of information flows by mixtures of gamma distributions”, in Proc. of 27 th European Conf. on Modelling and Simulation (ECMS 2013), Alesund, Norway, 2013, Ed. by R. T. Bye and H. Zhang (ECMS Webjørn Rekdalsbakken, 2013), pp. 569–572. https://​doi.​org/​10.​7148/​2013-0569
16.
Zurück zum Zitat A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Courier Corporation, 1957). A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Courier Corporation, 1957).
19.
Zurück zum Zitat A. L. Vilyaev, and A. K. Gorshenin, “On modeling trading strategies for currency pairs using deep neural networks and method of moving separation of mixtures,” Intell. Sist. Teor. Pril. 25, 92–96 (2021). A. L. Vilyaev, and A. K. Gorshenin, “On modeling trading strategies for currency pairs using deep neural networks and method of moving separation of mixtures,” Intell. Sist. Teor. Pril. 25, 92–96 (2021).
Metadaten
Titel
Finite Normal Mixture Models for the Ensemble Learning of Recurrent Neural Networks with Applications to Currency Pairs
verfasst von
A. K. Gorshenin
A. L. Vilyaev
Publikationsdatum
01.12.2022
Verlag
Pleiades Publishing
Erschienen in
Pattern Recognition and Image Analysis / Ausgabe 4/2022
Print ISSN: 1054-6618
Elektronische ISSN: 1555-6212
DOI
https://doi.org/10.1134/S1054661822040058

Weitere Artikel der Ausgabe 4/2022

Pattern Recognition and Image Analysis 4/2022 Zur Ausgabe

ARTIFICIAL INTELLIGENCE TECHNIQUES IN PATTERN RECOGNITION AND IMAGE ANALYSIS

Reference-Corpus Formation for Estimating the Closeness of Topical Texts to the Semantic Standard

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

Subjective Restoration of Omissions in the Measurement Data of an Object of Study and Its Mathematical Model

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

Reduction of Video Data at Translation of a Registered Object Relative to Video Sensors Based on the Eigenbasis of Interpretation Model

Premium Partner