Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 1/2018

29.11.2017 | RESEARCH PAPER

Finite prism method based topology optimization of beam cross section for buckling load maximization

verfasst von: Huu-Dat Nguyen, Gang-Won Jang, Do-Min Kim, Yoon Young Kim

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The use of the finite element method (FEM) for buckling topology optimization of a beam cross section requires large numerical cost due to the discretization in the length direction of the beam. This investigation employs the finite prism method (FPM) as a tool for linear buckling analysis, reducing degrees of freedom of three-dimensional nodes of FEM to those of two-dimensional nodes with the help of harmonic basis functions in the length direction. The optimization problem is defined as the maximization problem of the lowest eigenvalue, for which a bound variable is introduced and set as the design objective to treat mode switching phenomena of multiple eigenvalues. The use of the bound formulation also helps the proposed optimization to treat beams having local plate buckling modes as the fundamental modes as well as beams having global buckling modes. The axial stress is calculated according to the distribution of material modulus which is interpolated using the SIMP approach. Optimization problems finding cross-section layouts from rectangular, L-shaped and generally-shaped design domains are solved for various beam lengths to ascertain the effectiveness of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Banichuk NV, Ragnedda F, Serra M (2002) Optimum shapes of bar cross-sections. Struct Multidiscip Optim 23:222–232CrossRef Banichuk NV, Ragnedda F, Serra M (2002) Optimum shapes of bar cross-sections. Struct Multidiscip Optim 23:222–232CrossRef
Zurück zum Zitat Bendsøe MP, Olhoff N, Taylor JE (1983) A variational formulation for multicriteria structural optimization. J Struct Mech 11:523–544CrossRef Bendsøe MP, Olhoff N, Taylor JE (1983) A variational formulation for multicriteria structural optimization. J Struct Mech 11:523–544CrossRef
Zurück zum Zitat Bleich H (1952) Buckling strength of metal structures. McGraw-Hill Book Co. Inc., New York Bleich H (1952) Buckling strength of metal structures. McGraw-Hill Book Co. Inc., New York
Zurück zum Zitat Bradford MA, Azhari M (1995) Buckling of plates with different end conditions using the finite strip method. Comput Struct 56(1):75–83CrossRefMATH Bradford MA, Azhari M (1995) Buckling of plates with different end conditions using the finite strip method. Comput Struct 56(1):75–83CrossRefMATH
Zurück zum Zitat Bruggi M, Taliercio A (2012) Maximization of the fundamental eigenfrequency of micropolar solids through topology optimization. Struct Multidiscip Optim 46:549–560MathSciNetCrossRefMATH Bruggi M, Taliercio A (2012) Maximization of the fundamental eigenfrequency of micropolar solids through topology optimization. Struct Multidiscip Optim 46:549–560MathSciNetCrossRefMATH
Zurück zum Zitat Bui HC (2009) Buckling analysis of thin-walled sections under general loading conditions. Thin-Walled Struct 47:730–739CrossRef Bui HC (2009) Buckling analysis of thin-walled sections under general loading conditions. Thin-Walled Struct 47:730–739CrossRef
Zurück zum Zitat Bulson PS (1970) Stability of flat plates. Chatto & Windus, London Bulson PS (1970) Stability of flat plates. Chatto & Windus, London
Zurück zum Zitat Cheung MS, Chan MYT (1978) Three-dimensional finite strip analysis of elastic solids. Comput Struct 6:629–638CrossRefMATH Cheung MS, Chan MYT (1978) Three-dimensional finite strip analysis of elastic solids. Comput Struct 6:629–638CrossRefMATH
Zurück zum Zitat Cheung YK, Tham LG (1997) The finite strip method, 1st edn. CRC Press, Boca Raton Cheung YK, Tham LG (1997) The finite strip method, 1st edn. CRC Press, Boca Raton
Zurück zum Zitat Du J, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidiscip Optim 34:91–110MathSciNetCrossRefMATH Du J, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidiscip Optim 34:91–110MathSciNetCrossRefMATH
Zurück zum Zitat Gao X, Ma H (2015) Topology optimization of continuum structures under buckling constraints. Comput Struct 157:142–152CrossRef Gao X, Ma H (2015) Topology optimization of continuum structures under buckling constraints. Comput Struct 157:142–152CrossRef
Zurück zum Zitat Gobbi M, Levi F, Mastinu G, Previati G (2015) On the analytical derivation of the Pareto-optimal set with applications to structural design. Struct Multidiscip Optim 51(3):645–657MathSciNetCrossRef Gobbi M, Levi F, Mastinu G, Previati G (2015) On the analytical derivation of the Pareto-optimal set with applications to structural design. Struct Multidiscip Optim 51(3):645–657MathSciNetCrossRef
Zurück zum Zitat Guo X, Cheng GD, Olhoff N (2005) Optimum design of truss topology under buckling constraints. Struct Multidiscip Optim 30:169–180CrossRef Guo X, Cheng GD, Olhoff N (2005) Optimum design of truss topology under buckling constraints. Struct Multidiscip Optim 30:169–180CrossRef
Zurück zum Zitat Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically - a new moving morphable components based framework. J Appl Mech 81:081009CrossRef Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically - a new moving morphable components based framework. J Appl Mech 81:081009CrossRef
Zurück zum Zitat Hancock GJ, Pham CH (2015) Buckling analysis of thin-walled sections under localised loading using the semi-analytical finite strip method. Thin-Walled Struct 86:35–46CrossRef Hancock GJ, Pham CH (2015) Buckling analysis of thin-walled sections under localised loading using the semi-analytical finite strip method. Thin-Walled Struct 86:35–46CrossRef
Zurück zum Zitat Jalalpour M, Igusa T, Guest JK (2011) Optimal design of trusses with geometric imperfections: accounting for global instability. Int J Solids Struct 48:011–019CrossRef Jalalpour M, Igusa T, Guest JK (2011) Optimal design of trusses with geometric imperfections: accounting for global instability. Int J Solids Struct 48:011–019CrossRef
Zurück zum Zitat Kemmler R, Lipka A, Ramm E (2005) Large deformations and stability in topology optimization. Struct Multidiscip Optim 30:459–476MathSciNetCrossRefMATH Kemmler R, Lipka A, Ramm E (2005) Large deformations and stability in topology optimization. Struct Multidiscip Optim 30:459–476MathSciNetCrossRefMATH
Zurück zum Zitat Khot N, Venkayya V, Berke L (1976) Optimum structural design with stability constraints. Int J Numer Methods Eng 10:1097–1114CrossRefMATH Khot N, Venkayya V, Berke L (1976) Optimum structural design with stability constraints. Int J Numer Methods Eng 10:1097–1114CrossRefMATH
Zurück zum Zitat Kim YY, Kim TS (2000) Topology optimization of beam cross sections. Int J Solids Struct 37:477–493CrossRefMATH Kim YY, Kim TS (2000) Topology optimization of beam cross sections. Int J Solids Struct 37:477–493CrossRefMATH
Zurück zum Zitat Lindgaard E, Dahl J (2013) On compliance and buckling objective functions in topology optimization of snap-through problems. Struct Multidiscip Optim 47(3):409–421MathSciNetCrossRefMATH Lindgaard E, Dahl J (2013) On compliance and buckling objective functions in topology optimization of snap-through problems. Struct Multidiscip Optim 47(3):409–421MathSciNetCrossRefMATH
Zurück zum Zitat Lindgaard E, Lund E (2010) Nonlinear buckling optimization of composite structures. Comput Methods Appl Mech Eng 199:319–330MathSciNetCrossRefMATH Lindgaard E, Lund E (2010) Nonlinear buckling optimization of composite structures. Comput Methods Appl Mech Eng 199:319–330MathSciNetCrossRefMATH
Zurück zum Zitat Liu S, An X, Jia H (2008) Topology optimization of beam cross-section considering warping deformation. Struct Multidiscip Optim 35:403–411CrossRef Liu S, An X, Jia H (2008) Topology optimization of beam cross-section considering warping deformation. Struct Multidiscip Optim 35:403–411CrossRef
Zurück zum Zitat Lund E (2009) Buckling topology optimization of laminated multi-material composite shell structures. Compos Struct 91:158–167CrossRef Lund E (2009) Buckling topology optimization of laminated multi-material composite shell structures. Compos Struct 91:158–167CrossRef
Zurück zum Zitat Neves MM, Rodrigues H, Guedes JM (1995) Generalized topology design of structures with a buckling load criterion. Struct Optim 10:71–78CrossRef Neves MM, Rodrigues H, Guedes JM (1995) Generalized topology design of structures with a buckling load criterion. Struct Optim 10:71–78CrossRef
Zurück zum Zitat Olhoff N (1989) Multicriterion structural optimization via bound formulation and mathematical programming. Struct Optim 1:11–17CrossRef Olhoff N (1989) Multicriterion structural optimization via bound formulation and mathematical programming. Struct Optim 1:11–17CrossRef
Zurück zum Zitat Ragnedda F, Serra M (2005) On optimum thin-walled closed cross section. Struct Multidiscip Optim 30:233–235CrossRef Ragnedda F, Serra M (2005) On optimum thin-walled closed cross section. Struct Multidiscip Optim 30:233–235CrossRef
Zurück zum Zitat Serra M (2005) Optimum design of thin-walled closed cross-sections: a numerical approach. Comput Struct 83:297–302CrossRef Serra M (2005) Optimum design of thin-walled closed cross-sections: a numerical approach. Comput Struct 83:297–302CrossRef
Zurück zum Zitat Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Optim 8:207–227CrossRef Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Optim 8:207–227CrossRef
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24:359–373MathSciNetCrossRefMATH Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24:359–373MathSciNetCrossRefMATH
Zurück zum Zitat Taylor JE, Bendsøe MP (1984) An interpretation of min-max structural design problems including a method for relaxing constraints. Int J Solids Struct 20(4):301–314MathSciNetCrossRefMATH Taylor JE, Bendsøe MP (1984) An interpretation of min-max structural design problems including a method for relaxing constraints. Int J Solids Struct 20(4):301–314MathSciNetCrossRefMATH
Zurück zum Zitat Tcherniak D (2002) Topology optimization of resonating structures using SIMP method. Int J Numer Methods Eng 54(11):605–622CrossRefMATH Tcherniak D (2002) Topology optimization of resonating structures using SIMP method. Int J Numer Methods Eng 54(11):605–622CrossRefMATH
Zurück zum Zitat Timoshenko SP, Gere JM (1961) Theory of elastic stability. McGraw-Hill Book Co. Inc, NewYork Timoshenko SP, Gere JM (1961) Theory of elastic stability. McGraw-Hill Book Co. Inc, NewYork
Zurück zum Zitat Wittrick W (1962) Rates of change of eigenvalues, with reference to buckling and vibration problems. J Roy Aeronaut Soc 66:591–591CrossRef Wittrick W (1962) Rates of change of eigenvalues, with reference to buckling and vibration problems. J Roy Aeronaut Soc 66:591–591CrossRef
Zurück zum Zitat Wong CCK, Vardy AE (1985) Finite prism analysis of plates and shells. Int J Numer Methods Eng 21:529–541CrossRefMATH Wong CCK, Vardy AE (1985) Finite prism analysis of plates and shells. Int J Numer Methods Eng 21:529–541CrossRefMATH
Zurück zum Zitat Zhang Z, Liu S, Tang Z (2009) Design optimization of cross-sectional configuration of rib-reinforced thin-walled beam. Thin-Walled Struct 47:868–878CrossRef Zhang Z, Liu S, Tang Z (2009) Design optimization of cross-sectional configuration of rib-reinforced thin-walled beam. Thin-Walled Struct 47:868–878CrossRef
Zurück zum Zitat Zhang W, Chen J, Zhu X, Zhou J, Xue D, Lei X, Guo X (2017a) Explicit three dimensional topology optimization via moving Morphable void (MMV) approach. Comput Methods Appl Mech Eng 322:590–614MathSciNetCrossRef Zhang W, Chen J, Zhu X, Zhou J, Xue D, Lei X, Guo X (2017a) Explicit three dimensional topology optimization via moving Morphable void (MMV) approach. Comput Methods Appl Mech Eng 322:590–614MathSciNetCrossRef
Zurück zum Zitat Zhang W, Yang W, Zhou J, Li D, Guo X (2017b) Structural topology optimization through explicit boundary evolution. J Appl Mech 84:011011CrossRef Zhang W, Yang W, Zhou J, Li D, Guo X (2017b) Structural topology optimization through explicit boundary evolution. J Appl Mech 84:011011CrossRef
Zurück zum Zitat Zhou M (1996) Difficulties in truss topology optimization with stress and local buckling constraints. Structural Optimization 11:134–136 Zhou M (1996) Difficulties in truss topology optimization with stress and local buckling constraints. Structural Optimization 11:134–136
Metadaten
Titel
Finite prism method based topology optimization of beam cross section for buckling load maximization
verfasst von
Huu-Dat Nguyen
Gang-Won Jang
Do-Min Kim
Yoon Young Kim
Publikationsdatum
29.11.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 1/2018
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-017-1860-8

Weitere Artikel der Ausgabe 1/2018

Structural and Multidisciplinary Optimization 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.