Skip to main content

2021 | OriginalPaper | Buchkapitel

Finite Volume Method Used for Numerical Investigations of Electrochemical Devices

verfasst von : Elena Carcadea, Mihai Varlam

Erschienen in: Numerical Methods for Energy Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The chapter provides a general overview on the Finite Volume Method (FVM) and on Computational Fluid Dynamic (CFD). It introduces the FVM by using a general scalar transport equation and it describes the main steps of a CFD investigation. All these are applied to the mass, momentum, species, energy and potential conservation equations, equations that govern the operation of Proton Exchange Membrane (PEM) fuel cells. The importance of spatial discretization and of interpolation schemes used in CFD investigations is point out by analysing few parameters with impact on the fuel cell operation. Two cases have been considered. First case based on a fuel cell with a simplified configuration, namely a single serpentine channel, revealed the influence of spatial discretization on the accuracy of the simulation results with regards to current density, pressure and temperature. The second case based on a lab-scale fuel cell with two configurations for channels (7 serpentine and 7 parallel) have been used to analyse the effect of three interpolation schemes (first order, second order, QUICK) on the PEM fuel cell operation; therefore, pressure, hydrogen and water mass fraction profiles were considered for comparison. It was found out that besides the differences in the results accuracy due to spatial discretization and interpolation schemes, the design/geometry used in the CFD investigation may or may not emphasize these differences. If for the 7-serpentine channels fuel cell the interpolation scheme did not show much changes in the accuracy of the results not the same conclusion was drawn for the 7-parallel channels fuel cell where the accuracy of the results improved with increasing the order of the interpolation scheme. A mesh-independent solution on a well-posed problem will provide valuable and accurate results only if the numerical methods are appropriate and the interpolation schemes are of high order. The modeling of fuel cells using CFD techniques, as of any other device, can be an important alternative to the experiment, providing information that is critical to design, operation and optimization, the requirement being to use appropriate model, assumptions and boundary conditions and, of course, an adequate numerical method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Berning T, Djilali N (2003) A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell. J Electrochem Soc 150:A1589–A1598CrossRef Berning T, Djilali N (2003) A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell. J Electrochem Soc 150:A1589–A1598CrossRef
3.
Zurück zum Zitat Springer TE, Zawodzinski TA, Gottesfeld S (1991) Polymer electrolyte fuel cell model. J Electrochem Soc 138:2334–2342CrossRef Springer TE, Zawodzinski TA, Gottesfeld S (1991) Polymer electrolyte fuel cell model. J Electrochem Soc 138:2334–2342CrossRef
7.
Zurück zum Zitat Um S, Wang CY, Chen KS (2000) Computational fluid dynamics modeling of proton exchange membrane fuel cells. J Electrochem Soc 147(12):4485–4493CrossRef Um S, Wang CY, Chen KS (2000) Computational fluid dynamics modeling of proton exchange membrane fuel cells. J Electrochem Soc 147(12):4485–4493CrossRef
10.
Zurück zum Zitat Heister T, Rebholz LG, Xue F (2019) Numerical analysis—an introduction. De Gruyter Textbook, pp 121–140. ISBN 978-3-11-057330-5 Heister T, Rebholz LG, Xue F (2019) Numerical analysis—an introduction. De Gruyter Textbook, pp 121–140. ISBN 978-3-11-057330-5
12.
Zurück zum Zitat Moukalled F, Mangani L, Darwish M (2016) The finite volume method. In: Computational fluid dynamics, an advanced introduction with OpenFOAM® and Matlab®. Fluid mechanics and its applications, vol 113. Springer International Publishing, pp 103–135. ISSN 0926-5112. https://doi.org/10.1007/978-3-319-16874-6 Moukalled F, Mangani L, Darwish M (2016) The finite volume method. In: Computational fluid dynamics, an advanced introduction with OpenFOAM® and Matlab®. Fluid mechanics and its applications, vol 113. Springer International Publishing, pp 103–135. ISSN 0926-5112. https://​doi.​org/​10.​1007/​978-3-319-16874-6
13.
Zurück zum Zitat Versteeg HK, Malalasekera W (1995) Computational fluid dynamics (CFD) is the application of algorithm and numerical techniques to solve fluid flow problems. Wiley, pp 85–204 ISBN 0-582-21884-5 Versteeg HK, Malalasekera W (1995) Computational fluid dynamics (CFD) is the application of algorithm and numerical techniques to solve fluid flow problems. Wiley, pp 85–204 ISBN 0-582-21884-5
15.
Zurück zum Zitat Marinoiu A, Cobzaru C, Carcadea E et al (2015) An experimental approach for finding low cost alternative support material in PEM fuel cells. Rev Roum Chim 61:433–440 Marinoiu A, Cobzaru C, Carcadea E et al (2015) An experimental approach for finding low cost alternative support material in PEM fuel cells. Rev Roum Chim 61:433–440
18.
Zurück zum Zitat Russel J, Cohn R (2012) Gaussian elimination. ISBN 9-785510890709 Russel J, Cohn R (2012) Gaussian elimination. ISBN 9-785510890709
20.
Zurück zum Zitat Mazumder S (2016) Numerical methods for partial differential equations. In: Finite difference and finite volume methods, pp 1–49. ISBN 978-0-12-849894-1 Mazumder S (2016) Numerical methods for partial differential equations. In: Finite difference and finite volume methods, pp 1–49. ISBN 978-0-12-849894-1
22.
Zurück zum Zitat Anderson J (1995) Computational fluid dynamics—the basics with applications. McGraw-Hill, pp 216–278. ISBN 0-07–001685-2 Anderson J (1995) Computational fluid dynamics—the basics with applications. McGraw-Hill, pp 216–278. ISBN 0-07–001685-2
25.
Zurück zum Zitat Carcadea E, Varlam M, Ismail M et al (2019) PEM fuel cell performance improvement through numerical optimization of the parameters of the porous layers. Int J Hydrogen Energy 45(14):7968–7980CrossRef Carcadea E, Varlam M, Ismail M et al (2019) PEM fuel cell performance improvement through numerical optimization of the parameters of the porous layers. Int J Hydrogen Energy 45(14):7968–7980CrossRef
32.
Zurück zum Zitat Inoue G, Matsukuma Y, Minemoto M (2006) Effect of gas channel depth on current density distribution of polymer electrolyte fuel cell by numerical analysis including gas flow through gas diffusion layer. J Power Sources 157:36–152 Inoue G, Matsukuma Y, Minemoto M (2006) Effect of gas channel depth on current density distribution of polymer electrolyte fuel cell by numerical analysis including gas flow through gas diffusion layer. J Power Sources 157:36–152
33.
Zurück zum Zitat Carcadea E, Ingham DB, Stefanescu I et al (2011) The influence of permeability changes for a 7-serpentine channel PEM fuel cell performance. Int J Hydrogen Energy 36:10376–10383CrossRef Carcadea E, Ingham DB, Stefanescu I et al (2011) The influence of permeability changes for a 7-serpentine channel PEM fuel cell performance. Int J Hydrogen Energy 36:10376–10383CrossRef
34.
Zurück zum Zitat Ismail MS, Hughes KJ, Ingham DB et al (2013) Effect of PTFE loading of gas diffusion layers on the performance of proton exchange membrane fuel cells running at high-efficiency operating conditions. Int J Energy Res 37:1592–1599CrossRef Ismail MS, Hughes KJ, Ingham DB et al (2013) Effect of PTFE loading of gas diffusion layers on the performance of proton exchange membrane fuel cells running at high-efficiency operating conditions. Int J Energy Res 37:1592–1599CrossRef
35.
Zurück zum Zitat Jang WK, Choi J, Seo YH et al (2015) Effect of cathode flow field configuration on air-breathing proton exchange membrane fuel cell. Int J Precis Eng Man 16:1129–1134CrossRef Jang WK, Choi J, Seo YH et al (2015) Effect of cathode flow field configuration on air-breathing proton exchange membrane fuel cell. Int J Precis Eng Man 16:1129–1134CrossRef
36.
Zurück zum Zitat Khakaz-Baboli M, Harvey DA, Pharoah JG (2013) Investigating the performance of catalyst layer micro-structure with different platinum loadings. ECS Trans 50(2):765–772CrossRef Khakaz-Baboli M, Harvey DA, Pharoah JG (2013) Investigating the performance of catalyst layer micro-structure with different platinum loadings. ECS Trans 50(2):765–772CrossRef
37.
Zurück zum Zitat Raceanu M, Marinoiu A, Culcer M et al (2014) Preventing reactant starvation of a 5 kW PEM fuel cell stack during sudden load change. In: Proceedings of 6th international conference on electronics, computers and artificial intelligence, pp 55–60. https://doi.org/10.1109/ECAI.2014.7090147 Raceanu M, Marinoiu A, Culcer M et al (2014) Preventing reactant starvation of a 5 kW PEM fuel cell stack during sudden load change. In: Proceedings of 6th international conference on electronics, computers and artificial intelligence, pp 55–60. https://​doi.​org/​10.​1109/​ECAI.​2014.​7090147
38.
Zurück zum Zitat Sanchez DG, Ruiu T, Friedrich KA et al (2016) Analysis of the influence of temperature and gas humidity on the performance stability of polymer electrolyte membrane fuel cells. J Electrochem Soc 163:F150–F159CrossRef Sanchez DG, Ruiu T, Friedrich KA et al (2016) Analysis of the influence of temperature and gas humidity on the performance stability of polymer electrolyte membrane fuel cells. J Electrochem Soc 163:F150–F159CrossRef
39.
Zurück zum Zitat Obut S, Alper E (2011) Numerical assessment of dependence of polymer electrolyte membrane fuel cell performance on cathode catalyst layer parameters. J Power Sources 196:1920–1931CrossRef Obut S, Alper E (2011) Numerical assessment of dependence of polymer electrolyte membrane fuel cell performance on cathode catalyst layer parameters. J Power Sources 196:1920–1931CrossRef
40.
Zurück zum Zitat Antunes RA, de Oliveira MCL, Ett G et al (2011) Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: a review of the main challenges to improve electrical performance. J Power Sources 196(6):2945–2961CrossRef Antunes RA, de Oliveira MCL, Ett G et al (2011) Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: a review of the main challenges to improve electrical performance. J Power Sources 196(6):2945–2961CrossRef
41.
Zurück zum Zitat Carcadea E, Varlam M, Stefanescu I et al (2014) (2014) Effects of flow fields on PEM fuel cell performance. Prog Cryog Isot Sep 17:81–88 Carcadea E, Varlam M, Stefanescu I et al (2014) (2014) Effects of flow fields on PEM fuel cell performance. Prog Cryog Isot Sep 17:81–88
42.
Zurück zum Zitat Guilin HU, Xu Y, Zhang Z (2014) Numerical simulation of heat/mass transfer in a single proton exchange membrane fuel cell with serpentine fluid channels. Int J Electrochem Sci 9:1902–1910 Guilin HU, Xu Y, Zhang Z (2014) Numerical simulation of heat/mass transfer in a single proton exchange membrane fuel cell with serpentine fluid channels. Int J Electrochem Sci 9:1902–1910
44.
Zurück zum Zitat Kazemi Esfeh H, Azarafza A, Hamis MKA (2017) On the computational fluid dynamics of PEM fuel cells (PEMFCs): an investigation on mesh independence analysis. RSC Adv 7:32893–32902CrossRef Kazemi Esfeh H, Azarafza A, Hamis MKA (2017) On the computational fluid dynamics of PEM fuel cells (PEMFCs): an investigation on mesh independence analysis. RSC Adv 7:32893–32902CrossRef
Metadaten
Titel
Finite Volume Method Used for Numerical Investigations of Electrochemical Devices
verfasst von
Elena Carcadea
Mihai Varlam
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-62191-9_13